数列{an}的前n项和为Pn,若(n∈N*),数列{bn}满足2bn+1=bn+bn+2(n∈N*),且b3=7,b8=22.
(1)求数列{an}和{bn}的通项公式an和bn;
(2)设数列cn=anbn,求{cn}的前n项和Sn.
已知函数f(x)=+lnx(a>0)
(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[,2]上的最大值和最小值.
已知函数().
(Ⅰ)当时,求的图象在处的切线方程;
(Ⅱ)若函数在上有两个零点,求实数的取值范围;
(Ⅲ)若函数的图象与轴有两个不同的交点,且,
求证:(其中是的导函数).
已知抛物线 ,过点P(0,2)作直线l,交抛曲线于A,B两点,O为坐标原点,
(Ⅰ)求证: 为定值;
(Ⅱ)求三角形AOB面积的最小值.
为了降低能源损耗,国家对新建住宅的屋顶和外墙都要求建造隔热层,某房地产公司计划采用可使用30年的新型隔热层,已知每厘米厚的隔热层建造成本为8万元,每栋楼房每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为6万元.设为隔热层建造费用与30年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
试题篮
()