优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题
初中数学

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( - 1 , 0 ) B ( 4 , 0 ) C ( - 2 , - 3 ) ,直线 BC y 轴交于点 D E 为二次函数图象上任一点.

(1)求这个二次函数的解析式;

(2)若点 E 在直线 BC 的上方,过 E 分别作 BC y 轴的垂线,交直线 BC 于不同的两点 F G ( F G 的左侧),求 ΔEFG 周长的最大值;

(3)是否存在点 E ,使得 ΔEDB 是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.

来源:2016年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = a x 2 + bx + c 的图象经过点 A ( - 1 , 0 ) B ( 4 , 0 ) C ( - 2 , - 3 ) ,直线 BC y 轴交于点 D E 为二次函数图象上任一点.

(1)求这个二次函数的解析式;

(2)若点 E 在直线 BC 的上方,过 E 分别作 BC y 轴的垂线,交直线 BC 于不同的两点 F G ( F G 的左侧),求 ΔEFG 周长的最大值;

(3)是否存在点 E ,使得 ΔEDB 是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.

来源:2016年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 m : y = a x 2 - 6 ax + c ( a > 0 ) 的顶点 A x 轴上,并过点 B ( 0 , 1 ) ,直线 n : y = - 1 2 x + 7 2 x 轴交于点 D ,与抛物线 m 的对称轴 l 交于点 F ,过 B 点的直线 BE 与直线 n 相交于点 E ( - 7 , 7 )

(1)求抛物线 m 的解析式;

(2) P l 上的一个动点,若以 B E P 为顶点的三角形的周长最小,求点 P 的坐标;

(3)抛物线 m 上是否存在一动点 Q ,使以线段 FQ 为直径的圆恰好经过点 D ?若存在,求点 Q 的坐标;若不存在,请说明理由.

来源:2016年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + ( a + 3 ) x + 3 ( a 0 ) x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,在 x 轴上有一动点 E ( m 0 ) ( 0 < m < 4 ) ,过点 E x 轴的垂线交直线 AB 于点 N ,交抛物线于点 P ,过点 P PM AB 于点 M

(1)求 a 的值和直线 AB 的函数表达式;

(2)设 ΔPMN 的周长为 C 1 ΔAEN 的周长为 C 2 ,若 C 1 C 2 = 6 5 ,求 m 的值;

(3)如图2,在(2)条件下,将线段 OE 绕点 O 逆时针旋转得到 OE ' ,旋转角为 α ( 0 ° < α < 90 ° ) ,连接 E ' A E ' B ,求 E ' A + 2 3 E ' B 的最小值.

来源:2016年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + 2 B ( - 2 , 6 ) C ( 2 , 2 ) 两点.

(1)试求抛物线的解析式;

(2)记抛物线顶点为 D ,求 ΔBCD 的面积;

(3)若直线 y = - 1 2 x 向上平移 b 个单位所得的直线与抛物线段 BDC (包括端点 B C ) 部分有两个交点,求 b 的取值范围.

来源:2016年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A C 的坐标分别是 ( 0 , 4 ) ( - 1 , 0 ) ,将此平行四边形绕点 O 顺时针旋转 90 ° ,得到平行四边形 A ' B ' OC '

(1)若抛物线经过点 C A A ' ,求此抛物线的解析式;

(2)在(1)的情况下,点 M 是第一象限内抛物线上的一动点,问:当点 M 在何处时, ΔAMA ' 的面积最大?最大面积是多少?并求出此时 M 的坐标;

(3)在(1)的情况下,若 P 为抛物线上一动点, N x 轴上的一动点,点 Q 坐标为 ( 1 , 0 ) ,当 P N B Q 构成平行四边形时,求点 P 的坐标,当这个平行四边形为矩形时,求点 N 的坐标.

来源:2016年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

已知, m n 是一元二次方程 x 2 + 4 x + 3 = 0 的两个实数根,且 | m | < | n | ,抛物线 y = x 2 + bx + c 的图象经过点 A ( m , 0 ) B ( 0 , n ) ,如图所示.

(1)求这个抛物线的解析式;

(2)设(1)中的抛物线与 x 轴的另一个交点为 C ,抛物线的顶点为 D ,试求出点 C D 的坐标,并判断 ΔBCD 的形状;

(3)点 P 是直线 BC 上的一个动点(点 P 不与点 B 和点 C 重合),过点 P x 轴的垂线,交抛物线于点 M ,点 Q 在直线 BC 上,距离点 P 2 个单位长度,设点 P 的横坐标为 t ΔPMQ 的面积为 S ,求出 S t 之间的函数关系式.

来源:2016年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = - 1 4 x 2 - 1 2 x + 2 x 轴交于 A B 两点,与 y 轴交于点 C

(1)求点 A B C 的坐标;

(2)点 E 是此抛物线上的点,点 F 是其对称轴上的点,求以 A B E F 为顶点的平行四边形的面积;

(3)此抛物线的对称轴上是否存在点 M ,使得 ΔACM 是等腰三角形?若存在,请求出点 M 的坐标;若不存在,请说明理由.

来源:2016年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过 B ( 1 , 0 ) D ( 2 , 5 ) 两点,与 x 轴另一交点为 A ,点 H 是线段 AB 上一动点,过点 H 的直线 PQ x 轴,分别交直线 AD 、抛物线于点 Q P

(1)求抛物线的解析式;

(2)是否存在点 P ,使 APB = 90 ° ,若存在,求出点 P 的横坐标,若不存在,说明理由;

(3)连接 BQ ,一动点 M 从点 B 出发,沿线段 BQ 以每秒1个单位的速度运动到 Q ,再沿线段 QD 以每秒 2 个单位的速度运动到 D 后停止,当点 Q 的坐标是多少时,点 M 在整个运动过程中用时 t 最少?

来源:2017年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 2 x + c ( a 0 ) x 轴、 y 轴分别交于点 A B C 三点,已知点 A ( 2 , 0 ) ,点 C ( 0 , 8 ) ,点 D 是抛物线的顶点.

(1)求抛物线的解析式及顶点 D 的坐标;

(2)如图1,抛物线的对称轴与 x 轴交于点 E ,第四象限的抛物线上有一点 P ,将 ΔEBP 沿直线 EP 折叠,使点 B 的对应点 B ' 落在抛物线的对称轴上,求点 P 的坐标;

(3)如图2,设 BC 交抛物线的对称轴于点 F ,作直线 CD ,点 M 是直线 CD 上的动点,点 N 是平面内一点,当以点 B F M N 为顶点的四边形是菱形时,请直接写出点 M 的坐标.

来源:2017年辽宁省葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 的图象与 x 轴交于 A ( 5 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,抛物线的对称轴与 x 轴交于点 D

(1)求抛物线的函数表达式;

(2)如图1,点 E ( x , y ) 为抛物线上一点,且 5 < x < 2 ,过点 E EF / / x 轴,交抛物线的对称轴于点 F ,作 EH x 轴于点 H ,得到矩形 EHDF ,求矩形 EHDF 周长的最大值;

(3)如图2,点 P 为抛物线对称轴上一点,是否存在点 P ,使以点 P A C 为顶点的三角形是直角三角形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 4 y 轴于点 A ,并经过 B ( 4 , 4 ) C ( 6 , 0 ) 两点,点 D 的坐标为 ( 4 , 0 ) ,连接 AD AB BC ,点 E 从点 A 出发,以每秒 2 个单位长度的速度沿线段 AD 向点 D 运动,到达点 D 后,以每秒1个单位长度的速度沿射线 DC 运动,设点 E 的运动时间为 t 秒,过点 E AB 的垂线 EF 交直线 AB 于点 F ,以线段 EF 为斜边向右作等腰直角 ΔEFG

(1)求抛物线的解析式;

(2)当点 G 落在第一象限内的抛物线上时,求出 t 的值;

(3)设点 E 从点 A 出发时,点 E F G 都与点 A 重合,点 E 在运动过程中,当 ΔBCG 的面积为4时,直接写出相应的 t 值,并直接写出点 G 从出发到此时所经过的路径长.

来源:2017年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔABC 的一边 AB x 轴上, ABC = 90 ° ,点 C ( 4 , 8 ) 在第一象限内, AC y 轴交于点 E ,抛物线 y = 3 4 x 2 + bx + c 经过 A B 两点,与 y 轴交于点 D ( 0 , 6 )

(1)请直接写出抛物线的表达式;

(2)求 ED 的长;

(3)点 P x 轴下方抛物线上一动点,设点 P 的横坐标为 m ΔPAC 的面积为 S ,试求出 S m 的函数关系式;

(4)若点 M x 轴上一点(不与点 A 重合),抛物线上是否存在点 N ,使 CAN = MAN .若存在,请直接写出点 N 的坐标;若不存在,请说明理由.

来源:2017年辽宁省丹东市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中, 抛物线 y = a x 2 + bx + c 的开口向上, 且经过点 A ( 0 , 3 2 )

(1) 若此抛物线经过点 B ( 2 , 1 2 ) ,且与 x 轴相交于点 E F

①填空: b =   (用 含 a 的代数式表示) ;

②当 E F 2 的值最小时, 求抛物线的解析式;

(2) 若 a = 1 2 ,当 0 x 1 ,抛物线上的点到 x 轴距离的最大值为 3 时, 求 b 的值 .

来源:2017年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx ( a b 为常数, a 0 ) 经过两点 A ( 2 , 4 ) B ( 4 , 4 ) ,交 x 轴正半轴于点 C

(1)求抛物线 y = a x 2 + bx 的解析式.

(2)过点 B BD 垂直于 x 轴,垂足为点 D ,连接 AB AD ,将 ΔABD AD 为轴翻折,点 B 的对应点为 E ,直线 DE y 轴于点 P ,请判断点 E 是否在抛物线上,并说明理由.

(3)在(2)的条件下,点 Q 是线段 OC (不包含端点)上一动点,过点 Q 垂直于 x 轴的直线分别交直线 DP 及抛物线于点 M N ,连接 PN ,请探究:是否存在点 Q ,使 ΔPMN 是以 PM 为腰的等腰三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.

来源:2017年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学试题