如图1,菱形 的对角线 与 相交于点 , 、 两点同时从 点出发,以1厘米 秒的速度在菱形的对角线及边上运动.点 的运动路线为 ,点 的运动路线为 .设运动的时间为 秒, 、 间的距离为 厘米, 与 的函数关系的图象大致如图2所示,当点 在 段上运动且 、 两点间的距离最短时, 、 两点的运动路程之和为 厘米.
如图,四边形 中,已知 , 与 之间的距离为4, , , ,点 , 同时由 点出发,分别沿边 ,折线 向终点 方向移动,在移动过程中始终保持 ,已知点 的移动速度为每秒1个单位长度,设点 的移动时间为 秒, 的面积为 ,则能反映 与 之间函数关系的图象是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 的顶点坐标分别为 , , ,动点 、 同时从点 出发,分别沿 轴正方向和 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 到达点 时点 、 同时停止运动.过点 作 分别交 、 于点 、 ,连接 、 .设运动时间为 (秒 .
(1)求点 的坐标(用含 的式子表示);
(2)求四边形 面积的最大值或最小值;
(3)是否存在这样的直线 ,总能平分四边形 的面积?如果存在,请求出直线 的解析式;如果不存在,请说明理由;
(4)连接 ,当 时,求点 到 的距离.
如图(1),在平面直角坐标系中,矩形 在第一象限,且 轴,直线 沿 轴正方向平移,在平移过程中,直线被矩形 截得的线段长为 ,直线在 轴上平移的距离为 , 、 间的函数关系图象如图(2)所示,那么矩形 的面积为
A. |
|
B. |
|
C. |
8 |
D. |
10 |
如图1,点 是半圆 的直径 上一动点(不包括端点), ,过点 作 交半圆于点 ,连结 ,过点 作 交半圆于点 ,连结 .牛牛想探究在点 运动过程中 与 的大小关系.他根据学习函数的经验,记 , , .请你一起参与探究函数 、 随自变量 变化的规律.
通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.
|
|
0.30 |
0.80 |
1.60 |
2.40 |
3.20 |
4.00 |
4.80 |
5.60 |
|
|
|
2.01 |
2.98 |
3.46 |
3.33 |
2.83 |
2.11 |
1.27 |
0.38 |
|
|
|
5.60 |
4.95 |
3.95 |
2.96 |
2.06 |
1.24 |
0.57 |
0.10 |
|
(1)当 时, .
(2)在图2中画出函数 的图象,并结合图象判断函数值 与 的大小关系.
(3)由(2)知" 取某值时,有 ".如图3,牛牛连结了 ,尝试通过计算 , 的长来验证这一结论,请你完成计算过程.
如图,在菱形 中, , ,点 , 同时从点 出发,点 以 的速度沿 的方向运动,点 以 的速度沿 的方向运动,当其中一点到达 点时,两点停止运动.设运动时间为 , 的面积为 ,则下列图象中能大致反映 与 之间函数关系的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中, , .点 从点 出发,以 的速度在矩形的边上沿 运动,点 与点 重合时停止运动.设运动的时间为 (单位: , 的面积为 (单位: ,则 随 变化的函数图象大致为
A. |
|
B. |
|
C. |
|
D. |
|
如图, 为矩形 的对角线,已知 , ,点 沿折线 以每秒1个单位长度的速度运动(运动到 点停止),过点 作 于点 ,则 的面积 与点 运动的路程 间的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中, , ,动点 , 同时从点 出发,点 沿 的路径运动,点 沿 的路径运动,点 , 的运动速度相同,当点 到达点 时,点 也随之停止运动,连接 .设点 的运动路程为 , 为 ,则 关于 的函数图象大致是
A. |
|
B. |
|
C. |
|
D. |
|
如图1,矩形 中,点 为 的中点,点 沿 从点 运动到点 ,设 , 两点间的距离为 , ,图2是点 运动时 随 变化的关系图象,则 的长为
A. |
4 |
B. |
5 |
C. |
6 |
D. |
7 |
图(1),在 中, ,点 从点 出发,沿三角形的边以 秒的速度逆时针运动一周,图(2)是点 运动时,线段 的长度 随运动时间 (秒 变化的关系图象,则图(2)中 点的坐标是
A. |
|
B. |
|
C. |
|
D. |
|
如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度 (单位: 与运动时间 (单位: 的函数图象如图2,则该小球的运动路程 (单位: 与运动时间 (单位: 之间的函数图象大致是
A.B.
C.D.
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时线段 的长度 随时间 变化的关系图象,其中点 为曲线部分的最低点,则 的边 的长度为
A.12B.8C.10D.13
如图1,点 从 的顶点 出发,沿 匀速运动到点 ,图2是点 运动时,线段 的长度 随时间 变化的关系图象,其中 是曲线部分的最低点,则 的面积是
A.12B.24C.36D.48
如图1,在 中, , , ,点D为AB的中点,线段 上有一动点E,连接DE,作DA关于直线DE的对称图形,得到 ,过点F作 于点G.设A、E两点间的距离为 , 两点间的距离为
小军根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.
下面是小军的探究过程,请补充完整.
(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:
x/cm |
0 |
0.51 |
1.03 |
1.41 |
1.50 |
1.75 |
2.20 |
2.68 |
3.00 |
3.61 |
4.10 |
4.74 |
5.00 |
y/cm |
0 |
0.94 |
1.91 |
2.49 |
|
2.84 |
3.00 |
2.84 |
2.60 |
2.00 |
1.50 |
0.90 |
0.68 |
请你通过计算补全表格;
(2)描点、连线:在平面直角坐标系 中(如图2),描出表中各组数值所对应的点 ,并画出y关于x的图象;
(3)探究性质:随着x值的不断增大,y的值是怎样变化的? ;
(4)解决问题:当 时,FG的长度大约是 cm(保留两位小数).
试题篮
()