某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本 (元)与月产销量 (个)满足如下关系:
月产销量 (个) |
|
160 |
200 |
240 |
300 |
|
每个玩具的固定成本 (元) |
|
60 |
48 |
40 |
32 |
|
(1)写出月产销量 (个)与销售单价 (元)之间的函数关系式;
(2)求每个玩具的固定成本 (元)与月产销量 (个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品 千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用 (元)与 (千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸 骑自行车先走,平均每小时骑行 ;李玉刚同学和妈妈 乘公交车后行,公交车平均速度是 .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为 .设爸爸骑行时间为 .
(1)请分别写出爸爸的骑行路程 、李玉刚同学和妈妈的乘车路程 与 之间的函数解析式,并注明自变量的取值范围;
(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;
(3)请回答谁先到达老家.
今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元 件,月生产量 (千件)与出厂价 (元 的函数关系可用图中的线段 和 表示,其中 的解析式为 为常数).
(1)求该企业月生产量 (千件)与出厂价 (元 之间的函数关系式,并写出自变量 的取值范围.
(2)当该企业生产出的产品出厂价定为多少元时,月利润 (元 最大?最大利润是多少? 月利润 (出厂价 成本) 月生产量 工人月最低工资 .
如图,已知菱形 的边 在 轴上,点 的坐标为 ,点 是对角线 上的一个动点,点 在 轴上,当 最短时,点 的坐标为 .
某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量 与时间第 天之间的函数关系式为 , 为整数),销售单价 (元 与时间第 天之间满足一次函数关系如下表:
时间第 天 |
1 |
2 |
3 |
|
80 |
销售单价 (元 |
49.5 |
49 |
48.5 |
|
10 |
(1)直接写出销售单价 (元 与时间第 天之间的函数关系式.
(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?
在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米. 取 .
(1)求400米跑道中一段直道的长度;
(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:
跑道宽度 米 |
0 |
1 |
2 |
3 |
4 |
5 |
|
跑道周长 米 |
400 |
|
|
|
|
|
|
若设 表示跑道宽度(单位:米), 表示该跑道周长(单位:米),试写出 与 的函数关系式:
(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?
将直角三角板 按如图1放置,直角顶点 与坐标原点重合,直角边 、 分别与 轴和 轴重合,其中 .将此三角板沿 轴向下平移,当点 平移到原点 时运动停止.设平移的距离为 ,平移过程中三角板落在第一象限部分的面积为 , 关于 的函数图象(如图2所示)与 轴相交于点 , ,与 轴相交于点 .
(1)试确定三角板 的面积;
(2)求平移前 边所在直线的解析式;
(3)求 关于 的函数关系式,并写出 点的坐标.
为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:
用户每月用水量 |
32及其以下 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43及其以上 |
户数(户) |
200 |
160 |
180 |
220 |
240 |
210 |
190 |
100 |
170 |
120 |
100 |
110 |
(1)为确保 的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?
(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设 表示每户每月用水量(单位: ), 表示每户每月应交水费(单位:元),求 与 的函数关系式;
(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?
某商店分两次购进 、 两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
|
购进数量(件) |
购进所需费用(元) |
|
|
|
|
|
第一次 |
30 |
40 |
3800 |
第二次 |
40 |
30 |
3200 |
(1)求 、 两种商品每件的进价分别是多少元?
(2)商场决定 种商品以每件30元出售, 种商品以每件100元出售.为满足市场需求,需购进 、 两种商品共1000件,且 种商品的数量不少于 种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:
设 表示水彩笔在使用期内需要更换的笔芯个数, 表示每支水彩笔在购买笔芯上所需要的费用(单位:元), 表示购买水彩笔的同时购买的笔芯个数.
(1)若 ,求 与 的函数关系式;
(2)若要使这30支水彩笔"更换笔芯的个数不大于同时购买笔芯的个数"的频率不小于0.5,确定 的最小值;
(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.
小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强 从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚 从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程 (千米)与校车行驶时间 (分钟)之间的函数图象如图所示.
(1)求点 的纵坐标 的值;
(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.
某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费 (元)是行李质量 的一次函数.已知行李质量为 时需付行李费2元,行李质量为 时需付行李费8元.
(1)当行李的质量 超过规定时,求 与 之间的函数表达式;
(2)求旅客最多可免费携带行李的质量.
张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买 个甲种文具时,需购买 个乙种文具.
(1)①当减少购买1个甲种文具时, , ;
②求 与 之间的函数表达式.
(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲、乙两种文具各购买了多少个?
试题篮
()