优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的性质 / 解答题
初中数学

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c x 轴交于点 A ( 3 , 0 ) 、点 B ( 1 , 0 ) ,与 y 轴交于点 C

(1)求拋物线的解析式;

(2)过点 D ( 0 , 3 ) 作直线 MN / / x 轴,点 P 在直线 MN 上且 S ΔPAC = S ΔDBC ,直接写出点 P 的坐标.

来源:2019年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 AB 与抛物线 y = x 2 + bx + c 交于 A ( 1 , 0 ) B ( 2 , 3 ) 两点,抛物线与 y 轴交于点 C

(1)求一次函数和二次函数的解析式;

(2)求 ΔABC 的面积.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c y 轴交于点 A ( 0 , 2 ) ,对称轴为直线 x = 2 ,平行于 x 轴的直线与抛物线交于 B C 两点,点 B 在对称轴左侧, BC = 6

(1)求此抛物线的解析式.

(2)点 P x 轴上,直线 CP ΔABC 面积分成 2 : 3 两部分,请直接写出 P 点坐标.

来源:2018年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c y 轴交于点 A ( 0 , 2 ) ,对称轴为直线 x = 2 ,平行于 x 轴的直线与抛物线交于 B C 两点,点 B 在对称轴左侧, BC = 6

(1)求此抛物线的解析式.

(2)点 P x 轴上,直线 CP ΔABC 面积分成 2 : 3 两部分,请直接写出 P 点坐标.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过 A ( 1 , 0 ) B ( 3 , 0 ) 两点,交 y 轴于点 C ,点 D 为抛物线的顶点,连接 BD ,点 H BD 的中点.请解答下列问题:

(1)求抛物线的解析式及顶点 D 的坐标;

(2)在 y 轴上找一点 P ,使 PD + PH 的值最小,则 PD + PH 的最小值为  

(注:抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴是直线 x = b 2 a ,顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx + c 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,且关于直线 x = 1 对称,点 A 的坐标为 ( 1 , 0 )

(1)求二次函数的表达式;

(2)连接 BC ,若点 P y 轴上时, BP BC 的夹角为 15 ° ,求线段 CP 的长度;

(3)当 a x a + 1 时,二次函数 y = x 2 + bx + c 的最小值为 2 a ,求 a 的值.

来源:2019年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c 的图象与 x 轴相交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴相交于点 C ( 0 , 3 )

(1)求这个二次函数的表达式;

(2)若 P 是第四象限内这个二次函数的图象上任意一点, PH x 轴于点 H ,与线段 BC 交于点 M ,连接 PC

①求线段 PM 的最大值;

②当 ΔPCM 是以 PM 为一腰的等腰三角形时,求点 P 的坐标.

来源:2018年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = a x 2 + bx + c x 轴于点 A ( 4 , 0 ) B ( 2 , 0 ) ,交 y 轴于点 C ( 0 , 6 ) ,在 y 轴上有一点 E ( 0 , 2 ) ,连接 AE

(1)求二次函数的表达式;

(2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求 ΔADE 面积的最大值;

(3)抛物线对称轴上是否存在点 P ,使 ΔAEP 为等腰三角形?若存在,请直接写出所有 P 点的坐标,若不存在,请说明理由.

来源:2018年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 1 ) 在抛物线 y = a x 2 + bx + c 上.

(1)求抛物线解析式;

(2)在直线 BC 上方的抛物线上求一点 P ,使 ΔPBC 面积为1;

(3)在 x 轴下方且在抛物线对称轴上,是否存在一点 Q ,使 BQC = BAC ?若存在,求出 Q 点坐标;若不存在,说明理由.

来源:2018年山东省日照市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,是将抛物线 y = x 2 平移后得到的抛物线,其对称轴为 x = 1 ,与 x 轴的一个交点为 A ( 1 , 0 ) ,另一个交点为 B ,与 y 轴的交点为 C

(1)求抛物线的函数表达式;

(2)若点 N 为抛物线上一点,且 BC NC ,求点 N 的坐标;

(3)点 P 是抛物线上一点,点 Q 是一次函数 y = 3 2 x + 3 2 的图象上一点,若四边形 OAPQ 为平行四边形,这样的点 P Q 是否存在?若存在,分别求出点 P Q 的坐标;若不存在,说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 3 x + 5 4 x 轴相交于 A B 两点,与 y 轴相交于点 C ,点 D 是直线 BC 下方抛物线上一点,过点 D y 轴的平行线,与直线 BC 相交于点 E

(1)求直线 BC 的解析式;

(2)当线段 DE 的长度最大时,求点 D 的坐标.

来源:2016年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

某学习小组在研究函数 y = 1 6 x 3 - 2 x 的图象与性质时,已列表、描点并画出了图象的一部分.

x

- 4

- 3 . 5

- 3

- 2

- 1

0

1

2

3

3.5

4

y

- 8 3

- 7 48

3 2

8 3

11 6

0

- 11 6

- 8 3

- 3 2

7 48

8 3

(1)请补全函数图象;

(2)方程 1 6 x 3 - 2 x = - 2 实数根的个数为       

(3)观察图象,写出该函数的两条性质.

来源:2017年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B C 两点,与 y 轴交于点 E ( 0 , 3 )

(1)求抛物线的表达式;

(2)已知点 F ( 0 , 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.

(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M N (点 M N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.

来源:2018年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知直线 y = 2 x + 4 分别交 x 轴、 y 轴于点 A B ,抛物线过 A B 两点,点 P 是线段 AB 上一动点,过点 P PC x 轴于点 C ,交抛物线于点 D

(1)若抛物线的解析式为 y = 2 x 2 + 2 x + 4 ,设其顶点为 M ,其对称轴交 AB 于点 N

①求点 M N 的坐标;

②是否存在点 P ,使四边形 MNPD 为菱形?并说明理由;

(2)当点 P 的横坐标为1时,是否存在这样的抛物线,使得以 B P D 为顶点的三角形与 ΔAOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

来源:2018年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知抛物线 y = x 2 + bx + c x 轴交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于 C 点,点 P 是抛物线上在第一象限内的一个动点,且点 P 的横坐标为 t

(1)求抛物线的表达式;

(2)设抛物线的对称轴为 l l x 轴的交点为 D .在直线 l 上是否存在点 M ,使得四边形 CDPM 是平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由.

(3)如图2,连接 BC PB PC ,设 ΔPBC 的面积为 S

①求 S 关于 t 的函数表达式;

②求 P 点到直线 BC 的距离的最大值,并求出此时点 P 的坐标.

来源:2018年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题