优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式 / 解答题
初中数学

如图1,在平面直角坐标系中,抛物线轴交于两点,与轴的负半轴交于点,已知抛物线的对称轴为直线两点的坐标分别为.点为直线下方的抛物线上的一个动点(不与两点重合).

(1)求此抛物线的解析式;

(2)如图1,连接得到,问是否存在着这样的点,使得的面积最大?如果存在,求出面积的最大值和此时点的坐标;如果不存在,请说明理由.

(3)如图2,连接交线段于点,点为线段的中点,过点于点于点,连接,则在点的运动过程中,的大小是否为定值?如果是,求出这个定值;如果不是,请说明理由.

来源:2019年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知抛物线过点

(1)求抛物线的解析式及其顶点的坐标;

(2)设点轴上一点,当时,求点的坐标;

(3)如图2.抛物线与轴交于点,点是该抛物线上位于第二象限的点,线段于点,交轴于点的面积分别为,求的最大值.

来源:2019年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线经过点,与轴相交于两点.

(1)求抛物线的函数表达式;

(2)点在抛物线的对称轴上,且位于轴的上方,将沿直线翻折得到△,若点恰好落在抛物线的对称轴上,求点和点的坐标;

(3)设是抛物线上位于对称轴右侧的一点,点在抛物线的对称轴上,当为等边三角形时,求直线的函数表达式.

来源:2019年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线经过轴上的点和点轴上的点,经过两点的直线为

①求抛物线的解析式.

②点出发,在线段上以每秒1个单位的速度向运动,同时点出发,在线段上以每秒2个单位的速度向运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为秒,求为何值时,的面积最大并求出最大值.

③过点于点,过抛物线上一动点(不与点重合)作直线的平行线交直线于点.若点为顶点的四边形是平行四边形,求点的横坐标.

来源:2019年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线经过原点,顶点为

(1)求抛物线的函数解析式;

(2)设点为抛物线的对称轴上的一点,点在该抛物线上,当四边

为菱形时,求出点的坐标;

(3)在(2)的条件下,抛物线在第一象限的图象上是否存在一点,使得点到直线的距离与其到轴的距离相等?若存在,求出直线的函数解析式;若不存在,请说明理由.

来源:2019年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

如图:在平面直角坐标系中,直线轴交于点,经过点的抛物线的对称轴是

(1)求抛物线的解析式;

(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点轴于点,若点在线段上,点在线段的延长线上,连接,且.求证:

(3)若(2)中的点坐标为,点轴上的点,点轴上的点,当时,抛物线上是否存在点,使四边形是矩形?如果存在,请求出点的坐标,如果不存在,请说明理由.

来源:2018年云南省曲靖市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点.

(1)求抛物线解析式;

(2)当点运动到什么位置时,的面积最大?

(3)过点轴的垂线,交线段于点,再过点轴交抛物线于点,连接,请问是否存在点使为等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

来源:2019年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线轴交于两点,与轴交于点,已知点的坐标为为抛物线第一象限上一点.

(1)求抛物线的解析式;

(2)如图1,连接,若,求的面积;

(3)如图2,连接,若,求点的坐标.

来源:2018年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,点的坐标为

(1)求抛物线的解析式;

(2)在抛物线的对称轴上找一点,使的值最小.并求出点坐标;

(3)在第二象限内的抛物线上,是否存在点,使得的面积是面积的一半?若存在,求出点的坐标,若不存在,请说明理由.

来源:2017年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,抛物线 y = a x 2 + 4 x + c 经过原点 O ( 0 , 0 ) 和点 A ( 3 , 3 ) P 为抛物线上的一个动点,过点 P x 轴的垂线,垂足为 B ( m , 0 ) ,并与直线 OA 交于点 C

(1)求抛物线的解析式;

(2)当点 P 在直线 OA 上方时,求线段 PC 的最大值;

(3)过点 A AD x 轴于点 D ,在抛物线上是否存在点 P ,使得以 P A C D 四点为顶点的四边形是平行四边形?若存在,求 m 的值;若不存在,请说明理由.

来源:2016年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点,点.已知抛物线是常数),顶点为

(Ⅰ)当抛物线经过点时,求顶点的坐标;

(Ⅱ)若点轴下方,当时,求抛物线的解析式;

(Ⅲ)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.

来源:2018年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线是常数)经过点

(1)求该抛物线的解析式和顶点坐标;

(2)为抛物线上的一个动点,关于原点的对称点为

①当点落在该抛物线上时,求的值;

②当点落在第二象限内,取得最小值时,求的值.

来源:2017年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 C : y = x 2 - 2 x + 1 的顶点为 P ,与 y 轴的交点为 Q ,点 F ( 1 , 1 2 )

(Ⅰ) 求点 P Q 的坐标;

(Ⅱ) 将抛物线 C 向上平移得到抛物线 C ' ,点 Q 平移后的对应点为 Q ' ,且 FQ ' = OQ '

①求抛物线 C ' 的解析式;

②若点 P 关于直线 Q ' F 的对称点为 K ,射线 FK 与抛物线 C ' 相交于点 A ,求点 A 的坐标 .

来源:2016年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线经过点两点,与轴交于点,点是抛物线上一个动点,设点的横坐标为.连接

(1)求抛物线的函数表达式;

(2)的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2019年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

综合与探究

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx - 8 x 轴交于 A B 两点,与 y 轴交于点 C ,直线 l 经过坐标原点 O ,与抛物线的一个交点为 D ,与抛物线的对称轴交于点 E ,连接 CE ,已知点 A D 的坐标分别为 ( - 2 , 0 ) ( 6 , - 8 )

(1)求抛物线的函数表达式,并分别求出点 B 和点 E 的坐标;

(2)试探究抛物线上是否存在点 F ,使 ΔFOE ΔFCE ?若存在,请直接写出点 F 的坐标;若不存在,请说明理由;

(3)若点 P y 轴负半轴上的一个动点,设其坐标为 ( 0 , m ) ,直线 PB 与直线 l 交于点 Q ,试探究:当 m 为何值时, ΔOPQ 是等腰三角形.

来源:2016年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题