优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式 / 解答题
初中数学

如图①,在平面直角坐标系中,已知四点,动点以每秒个单位长度的速度沿运动不与点、点重合),设运动时间为(秒

(1)求经过三点的抛物线的解析式;

(2)点在(1)中的抛物线上,当的中点时,若,求点的坐标;

(3)当上运动时,如图②.过点轴,垂足为,垂足为.设矩形重叠部分的面积为,求的函数关系式,并求出的最大值;

(4)点轴上一点,直线与直线交于点,与轴交于点.是否存在点,使得为等腰三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.

来源:2019年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线的图象经过点,顶点的坐标为,与轴交于两点.

(1)求抛物线的解析式.

(2)连接为直线上一点,当时,求点的坐标和的值.

(3)点轴上一动点,当为何值时,的值最小.并求出这个最小值.

(4)点关于轴的对称点为,当取最小值时,在抛物线的对称轴上是否存在点,使是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.

来源:2019年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = - x 2 + bx + c x 轴交于 A B 两点, AB = 4 ,交 y 轴于点 C ,对称轴是直线 x = 1

(1)求抛物线的解析式及点 C 的坐标;

(2)连接 BC E 是线段 OC 上一点, E 关于直线 x = 1 的对称点 F 正好落在 BC 上,求点 F 的坐标;

(3)动点 M 从点 O 出发,以每秒2个单位长度的速度向点 B 运动,过 M x 轴的垂线交抛物线于点 N ,交线段 BC 于点 Q .设运动时间为 t ( t > 0 ) 秒.

①若 ΔAOC ΔBMN 相似,请直接写出 t 的值;

ΔBOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.

来源:2019年湖北省鄂州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线过点两点,与轴交于点

(1)求抛物线的解析式及顶点的坐标;

(2)过点,垂足为,求证:四边形为正方形;

(3)点为抛物线在直线下方图形上的一动点,当面积最大时,求点的坐标;

(4)若点为线段上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.

来源:2019年湖南省张家界市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线过点,矩形的边在线段上(点在点的左侧),点在抛物线上,的平分线于点,点的中点,已知,且

(1)求抛物线的解析式;

(2)分别为轴,轴上的动点,顺次连接构成四边形,求四边形周长的最小值;

(3)在轴下方且在抛物线上是否存在点,使边上的高为?若存在,求出点的坐标;若不存在,请说明理由;

(4)矩形不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点,且直线平分矩形的面积时,求抛物线平移的距离.

来源:2019年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数的图象过原点,与轴的另一个交点为

(1)求该二次函数的解析式;

(2)在轴上方作轴的平行线,交二次函数图象于两点,过两点分别作轴的垂线,垂足分别为点、点.当矩形为正方形时,求的值;

(3)在(2)的条件下,动点从点出发沿射线以每秒1个单位长度匀速运动,同时动点以相同的速度从点出发沿线段匀速运动,到达点时立即原速返回,当动点返回到点时,两点同时停止运动,设运动时间为.过点轴作垂线,交抛物线于点,交直线于点,问:以四点为顶点构成的四边形能否是平行四边形.若能,请求出的值;若不能,请说明理由.

来源:2019年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中有为坐标原点,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点.

(1)求二次函数的解析式及顶点的坐标;

(2)过定点的直线与二次函数图象相交于两点.

①若,求的值;

②证明:无论为何值,恒为直角三角形;

③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.

来源:2019年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线轴分别交于两点,与轴交于点

(1)求抛物线的表达式及顶点的坐标;

(2)点是线段上一个动点.

①如图1,设,当为何值时,

②如图2,以为顶点的三角形是否与相似?若相似,求出点的坐标;若不相似,请说明理由.

来源:2019年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,顶点为的抛物线轴交于两点,与轴交于点

(1)求这条抛物线对应的函数表达式;

(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.

(3)若在第一象限的抛物线下方有一动点,满足,过轴于点,设的内心为,试求的最小值.

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

已知抛物线的对称轴是直线,与轴相交于两点(点在点右侧),与轴交于点

(1)求抛物线的解析式和两点的坐标;

(2)如图1,若点是抛物线上两点之间的一个动点(不与重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由;

(3)如图2,若点是抛物线上任意一点,过点轴的平行线,交直线于点,当时,求点的坐标.

来源:2019年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,顶点为的抛物线轴交于两点,与轴交于点,过点轴交抛物线于另一点,作轴,垂足为点,双曲线经过点,连接

(1)求抛物线的表达式;

(2)点分别是轴,轴上的两点,当以为顶点的四边形周长最小时,求出点的坐标;

(3)动点从点出发,以每秒1个单位长度的速度沿方向运动,运动时间为秒,当为何值时,的度数最大?(请直接写出结果)

来源:2019年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,为坐标原点,点,点的中线轴交于点,且经过三点.

(1)求圆心的坐标;

(2)若直线相切于点,交轴于点,求直线的函数表达式;

(3)在(2)的条件下,在过点且以圆心为顶点的抛物线上有一动点,过点轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.

来源:2019年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线轴,轴分别交于两点,抛物线经过两点,与轴的另一交点为

(1)求抛物线解析式及点坐标;

(2)若点轴下方抛物线上一动点,连接,当点运动到某一位置时,四边形面积最大,求此时点的坐标及四边形的面积;

(3)如图2,若点是半径为2的上一动点,连接,当点运动到某一位置时,的值最小,请求出这个最小值,并说明理由.

来源:2019年山东省日照市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于点,点,与轴交于点,连接.又已知位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线、线段以及轴于点

(1)求抛物线的表达式;

(2)连接,当直线运动时,求使得相似的点的坐标;

(3)作,垂足为,当直线运动时,求面积的最大值.

来源:2019年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线经过点两点,是其顶点,将抛物线绕点旋转,得到新的抛物线

(1)求抛物线的函数解析式及顶点的坐标;

(2)如图2,直线经过点是抛物线上的一点,设点的横坐标为,连接并延长,交抛物线于点,交直线于点,若,求的值;

(3)如图3,在(2)的条件下,连接,在直线下方的抛物线上是否存在点,使得?若存在,求出点的横坐标;若不存在,请说明理由.

来源:2019年山东省济南市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题