优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式 / 解答题
初中数学

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 2 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ( 0 , 2 ) OB = 4 OA tan BCO = 2

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)点 M N 分别是线段 BC AB 上的动点,点 M 从点 B 出发以每秒 5 2 个单位的速度向点 C 运动,同时点 N 从点 A 出发以每秒2个单位的速度向点 B 运动,当点 M N 中的一点到达终点时,两点同时停止运动.过点 M MP x 轴于点 E ,交抛物线于点 P .设点 M 、点 N 的运动时间为 t ( s ) ,当 t 为多少时, ΔPNE 是等腰三角形?

来源:2018年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = 4 x 2 2 ax + b x 轴相交于 A ( x 1 0 ) B ( x 2 0 ) ( 0 < x 1 < x 2 ) 两点,与 y 轴交于点 C

(1)设 AB = 2 tan ABC = 4 ,求该抛物线的解析式;

(2)在(1)中,若点 D 为直线 BC 下方抛物线上一动点,当 ΔBCD 的面积最大时,求点 D 的坐标;

(3)是否存在整数 a b 使得 1 < x 1 < 2 1 < x 2 < 2 同时成立,请证明你的结论.

来源:2017年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x + 1 ) 2 + 4 ( a 0 ) x 轴交于 A C 两点,与直线 y = x 1 交于 A B 两点,直线 AB 与抛物线的对称轴交于点 E

(1)求抛物线的解析式;

(2)若点 P 在直线 AB 上方的抛物线上运动.

①点 P 在什么位置时, ΔABP 的面积最大,求出此时点 P 的坐标;

②当点 P 与点 C 重合时,连接 PE ,将 ΔPEB 补成矩形,使 ΔPEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

来源:2017年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴分别交于 A ( 1 , 0 ) B ( 5 , 0 ) 两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点 C ,作 CD 垂直 x 轴于点 D ,连接 AC ,且 AD = 5 CD = 8 ,将 Rt Δ ACD 沿 x 轴向右平移 m 个单位,当点 C 落在抛物线上时,求 m 的值;

(3)在(2)的条件下,当点 C 第一次落在抛物线上记为点 E ,点 P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点 Q ,使以点 B E P Q 为顶点的四边形是平行四边形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.

来源:2017年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = x 2 + bx + c 的图象经过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,对称轴与 x 轴相交于点 E ,连接 BD

(1)求抛物线的解析式.

(2)若点 P 在直线 BD 上,当 PE = PC 时,求点 P 的坐标.

(3)在(2)的条件下,作 PF x 轴于 F ,点 M x 轴上一动点, N 为直线 PF 上一动点, G 为抛物线上一动点,当以点 F N G M 四点为顶点的四边形为正方形时,求点 M 的坐标.

来源:2017年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) ,经过点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) 三点.

(1)求抛物线的解析式及顶点 M 的坐标;

(2)连接 AC BC N 为抛物线上的点且在第四象限,当 S ΔNBC = S ΔABC 时,求 N 点的坐标;

(3)在(2)问的条件下,过点 C 作直线 l / / x 轴,动点 P ( m , 3 ) 在直线 l 上,动点 Q ( m , 0 ) x 轴上,连接 PM PQ NQ ,当 m 为何值时, PM + PQ + QN 最小,并求出 PM + PQ + QN 的最小值.

来源:2017年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) .与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,求点 D 的坐标;

②若 ΔBCD 是锐角三角形,求点 D 的纵坐标的取值范围.

来源:2017年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于点,与轴交于两点,点坐标为,抛物线的对称轴方程为

(1)求抛物线的解析式;

(2)点点出发,在线段上以每秒3个单位长度的速度向点运动,同时点点出发,在线段上以每秒1个单位长度的速度向点运动,其中一个点到达终点时,另一个点也停止运动,设的面积为,点运动时间为,试求的函数关系,并求的最大值;

(3)在点运动过程中,是否存在某一时刻,使为直角三角形?若存在,求出值;若不存在,请说明理由.

来源:2017年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知二次函数 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 的图象过点 O ( 0 , 0 ) 和点 A ( 4 , 0 ) ,函数图象最低点 M 的纵坐标为 8 3 ,直线 l 的解析式为 y = x

(1)求二次函数的解析式;

(2)直线 l 沿 x 轴向右平移,得直线 l ' l ' 与线段 OA 相交于点 B ,与 x 轴下方的抛物线相交于点 C ,过点 C CE x 轴于点 E ,把 ΔBCE 沿直线 l ' 折叠,当点 E 恰好落在抛物线上点 E ' 时(图 2 ) ,求直线 l ' 的解析式;

(3)在(2)的条件下, l ' y 轴交于点 N ,把 ΔBON 绕点 O 逆时针旋转 135 ° 得到△ B ' ON ' P l ' 上的动点,当△ PB ' N ' 为等腰三角形时,求符合条件的点 P 的坐标.

来源:2017年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 2 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 A ( 3 , 0 ) ,且 M ( 1 , 8 3 ) 是抛物线上另一点.

(1)求 a b 的值;

(2)连接 AC ,设点 P y 轴上任一点,若以 P A C 三点为顶点的三角形是等腰三角形,求 P 点的坐标;

(3)若点 N x 轴正半轴上且在抛物线内的一动点(不与 O A 重合),过点 N NH / / AC 交抛物线的对称轴于 H 点.设 ON = t ΔONH 的面积为 S ,求 S t 之间的函数关系式.

来源:2017年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c ( a 0 ) 的图象经过 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 2 ) 三点.

(1)求该二次函数的解析式;

(2)点 D 是该二次函数图象上的一点,且满足 DBA = CAO ( O 是坐标原点),求点 D 的坐标;

(3)点 P 是该二次函数图象上位于第一象限上的一动点,连接 PA 分别交 BC y 轴于点 E F ,若 ΔPEB ΔCEF 的面积分别为 S 1 S 2 ,求 S 1 S 2 的最大值.

来源:2017年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 经过 ΔOAB 的三个顶点,其中点 A ( 1 , 3 ) ,点 B ( 3 , 3 ) O 为坐标原点.

(1)求这条抛物线所对应的函数表达式;

(2)若 P ( 4 , m ) Q ( t , n ) 为该抛物线上的两点,且 n < m ,求 t 的取值范围;

(3)若 C 为线段 AB 上的一个动点,当点 A ,点 B 到直线 OC 的距离之和最大时,求 BOC 的大小及点 C 的坐标.

来源:2018年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知二次函数 y = a x 2 + 3 2 x + c ( a 0 ) 的图象与 y 轴交于点 A ( 0 , 4 ) ,与 x 轴交于点 B C ,点 C 坐标为 ( 8 , 0 ) ,连接 AB AC

(1)请直接写出二次函数 y = a x 2 + 3 2 x + c 的表达式;

(2)判断 ΔABC 的形状,并说明理由;

(3)若点 N x 轴上运动,当以点 A N C 为顶点的三角形是等腰三角形时,请写出此时点 N 的坐标;

(4)如图2,若点 N 在线段 BC 上运动(不与点 B C 重合),过点 N NM / / AC ,交 AB 于点 M ,当 ΔAMN 面积最大时,求此时点 N 的坐标.

来源:2018年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + 2 x + c x 轴交于 A ( 4 , 0 ) B ( 1 , 0 ) 两点,过点 B 的直线 y = kx + 2 3 分别与 y 轴及抛物线交于点 C D

(1)求直线和抛物线的表达式;

(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, ΔPDC 为直角三角形?请直接写出所有满足条件的 t 的值;

(3)如图2,将直线 BD 沿 y 轴向下平移4个单位后,与 x 轴, y 轴分别交于 E F 两点,在抛物线的对称轴上是否存在点 M ,在直线 EF 上是否存在点 N ,使 DM + MN 的值最小?若存在,求出其最小值及点 M N 的坐标;若不存在,请说明理由.

来源:2018年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线 y 1 = a x 2 1 2 x + c x 轴交于点 A 和点 B ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , 3 4 ) ,抛物线 y 1 的顶点为 G GM x 轴于点 M .将抛物线 y 1 平移后得到顶点为 B 且对称轴为直线 l 的抛物线 y 2

(1)求抛物线 y 2 的解析式;

(2)如图2,在直线 l 上是否存在点 T ,使 ΔTAC 是等腰三角形?若存在,请求出所有点 T 的坐标;若不存在,请说明理由;

(3)点 P 为抛物线 y 1 上一动点,过点 P y 轴的平行线交抛物线 y 2 于点 Q ,点 Q 关于直线 l 的对称点为 R ,若以 P Q R 为顶点的三角形与 ΔAMG 全等,求直线 PR 的解析式.

来源:2018年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题