如图,二次函数的图象与轴交于点,过点作轴的平行线交抛物线于另一点,抛物线过点,且顶点为,连接、、、.
(1)填空: ;
(2)点是抛物线上一点,点的横坐标大于1,直线交直线于点.若,求点的坐标;
(3)点在直线上,点关于直线对称的点为,点关于直线对称的点为,连接.当点在轴上时,直接写出的长.
如图,在平面直角坐标系中,抛物线 经过点 和点 ,交 轴正半轴于点 ,连接 ,点 是线段 上一动点(不与点 , 重合),以 为边在 轴上方作正方形 ,连接 ,将线段 绕点 逆时针旋转 ,得到线段 ,过点 作 轴, 交抛物线于点 ,设点 .
(1)求抛物线的解析式.
(2)若 与 相似,求 的值.
(3)当 时,求点 的坐标.
如图1所示,在平面直角坐标系中,抛物线 与 轴交于点 , 和点 ,与 轴交于点 .
(1)求抛物线 的表达式;
(2)如图2,将抛物线 先向左平移1个单位,再向下平移3个单位,得到抛物线 ,若抛物线 与抛物线 相交于点 ,连接 , , .
①求点 的坐标;
②判断 的形状,并说明理由;
(3)在(2)的条件下,抛物线 上是否存在点 ,使得 为等腰直角三角形,若存在,求出点 的坐标;若不存在,请说明理由.
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 , 是抛物线上一点(点 与点 、 、 不重合).
(1) ,点 的坐标是 ;
(2)设直线 与直线 相交于点 ,是否存在这样的点 ,使得 ?若存在,求出点 的横坐标;若不存在,请说明理由;
(3)连接 、 ,判断 和 的数量关系,并说明理由.
如图,抛物线 与 轴交于 , 两点.
(1)若过点 的直线 是抛物线的对称轴.
①求抛物线的解析式;
②对称轴上是否存在一点 ,使点 关于直线 的对称点 恰好落在对称轴上.若存在,请求出点 的坐标;若不存在,请说明理由.
(2)当 , 时,函数值 的最大值满足 ,求 的取值范围.
如图,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过 , 两点,与 轴另一交点为 .点 以每秒 个单位长度的速度在线段 上由点 向点 运动(点 不与点 和点 重合),设运动时间为 秒,过点 作 轴垂线交 轴于点 ,交抛物线于点 .
(1)求抛物线的解析式;
(2)如图①,过点 作 轴垂线交 轴于点 ,连接 交 于点 ,当 时,求 的值;
(3)如图②,连接 交 于点 ,当 是等腰三角形时,直接写出 的值.
如图,抛物线 经过 、 、 三点,点 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 的面积为3时,求点 的坐标;
(3)过点 作 ,垂足为点 ,是否存在点 ,使得 中的某个角等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.
出关于 的一元二次方程,解之取其非零值可得出点 的横坐标.依此即可得解.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过坐标原点和点 ,顶点为点 .
(1)求抛物线的关系式及点 的坐标;
(2)点 是直线 下方的抛物线上一动点,连接 , ,当 的面积等于 时,求 点的坐标;
(3)将直线 向下平移,得到过点 的直线 ,且与 轴负半轴交于点 ,取点 ,连接 ,求证: .
已知关于 的二次函数 (实数 , 为常数).
(1)若二次函数的图象经过点 ,对称轴为 ,求此二次函数的表达式;
(2)若 ,当 时,二次函数的最小值为21,求 的值;
(3)记关于 的二次函数 ,若在(1)的条件下,当 时,总有 ,求实数 的最小值.
如图,在平面直角坐标系中,点 为坐标原点,抛物线 的顶点是 ,将 绕点 顺时针旋转 后得到 ,点 恰好在抛物线上, 与抛物线的对称轴交于点 .
(1)求抛物线的解析式;
(2) 是线段 上一动点,且不与点 , 重合,过点 作平行于 轴的直线,与 的边分别交于 , 两点,将 以直线 为对称轴翻折,得到△ ,设点 的纵坐标为 .
①当△ 在 内部时,求 的取值范围;
②是否存在点 ,使 ,若存在,求出满足条件 的值;若不存在,请说明理由.
如图,抛物线 与 轴交于 , 两点,与直线 交于 , 两点,直线 与抛物线的对称轴交于点 .
(1)求抛物线的解析式;
(2)若点 在直线 上方的抛物线上运动.
①点 在什么位置时, 的面积最大,求出此时点 的坐标;
②当点 与点 重合时,连接 ,将 补成矩形,使 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.
抛物线 过 , , 三点.
(1)求抛物线的表达式;
(2)如图①,抛物线上一点 在线段 的上方, 交 于点 ,若满足 ,求点 的坐标;
(3)如图②, 为抛物线顶点,过 作直线 ,若点 在直线 上运动,点 在 轴上运动,是否存在这样的点 、 ,使得以 、 、 为顶点的三角形与 相似,若存在,求 、 的坐标,并求此时 的面积;若不存在,请说明理由.
试题篮
()