优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式 / 解答题
初中数学

如图,二次函数的图象与轴交于点,过点轴的平行线交抛物线于另一点,抛物线过点,且顶点为,连接

(1)填空:   

(2)点是抛物线上一点,点的横坐标大于1,直线交直线于点.若,求点的坐标;

(3)点在直线上,点关于直线对称的点为,点关于直线对称的点为,连接.当点轴上时,直接写出的长.

来源:2020年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 经过点 A ( 1 , 0 ) 和点 C ( 0 , 4 ) ,交 x 轴正半轴于点 B ,连接 AC ,点 E 是线段 OB 上一动点(不与点 O B 重合),以 OE 为边在 x 轴上方作正方形 OEFG ,连接 FB ,将线段 FB 绕点 F 逆时针旋转 90 ° ,得到线段 FP ,过点 P PH / / y 轴, PH 交抛物线于点 H ,设点 E ( a , 0 )

(1)求抛物线的解析式.

(2)若 ΔAOC ΔFEB 相似,求 a 的值.

(3)当 PH = 2 时,求点 P 的坐标.

来源:2019年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1所示,在平面直角坐标系中,抛物线 F 1 : y = a ( x - 2 5 ) 2 + 64 15 x 轴交于点 A ( - 6 5 0 ) 和点 B ,与 y 轴交于点 C

(1)求抛物线 F 1 的表达式;

(2)如图2,将抛物线 F 1 先向左平移1个单位,再向下平移3个单位,得到抛物线 F 2 ,若抛物线 F 1 与抛物线 F 2 相交于点 D ,连接 BD CD BC

①求点 D 的坐标;

②判断 ΔBCD 的形状,并说明理由;

(3)在(2)的条件下,抛物线 F 2 上是否存在点 P ,使得 ΔBDP 为等腰直角三角形,若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2020年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = 1 3 x 2 + bx + 2 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( 4 , 0 ) P 是抛物线上一点(点 P 与点 A B C 不重合).

(1) b =   ,点 B 的坐标是  

(2)设直线 PB 与直线 AC 相交于点 M ,是否存在这样的点 P ,使得 PM : MB = 1 : 2 ?若存在,求出点 P 的横坐标;若不存在,请说明理由;

(3)连接 AC BC ,判断 CAB CBA 的数量关系,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + bx + 5 x 轴交于 A B 两点.

(1)若过点 C 的直线 x = 2 是抛物线的对称轴.

①求抛物线的解析式;

②对称轴上是否存在一点 P ,使点 B 关于直线 OP 的对称点 B ' 恰好落在对称轴上.若存在,请求出点 P 的坐标;若不存在,请说明理由.

(2)当 b 4 0 x 2 时,函数值 y 的最大值满足 3 y 15 ,求 b 的取值范围.

来源:2020年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = x + 4 x 轴交于点 B ,与 y 轴交于点 C ,抛物线 y = x 2 + bx + c 经过 B C 两点,与 x 轴另一交点为 A .点 P 以每秒 2 个单位长度的速度在线段 BC 上由点 B 向点 C 运动(点 P 不与点 B 和点 C 重合),设运动时间为 t 秒,过点 P x 轴垂线交 x 轴于点 E ,交抛物线于点 M

(1)求抛物线的解析式;

(2)如图①,过点 P y 轴垂线交 y 轴于点 N ,连接 MN BC 于点 Q ,当 MQ NQ = 1 2 时,求 t 的值;

(3)如图②,连接 AM BC 于点 D ,当 ΔPDM 是等腰三角形时,直接写出 t 的值.

来源:2019年辽宁省葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 经过 A ( - 1 , 0 ) B ( 4 , 0 ) C ( 0 , 2 ) 三点,点 D ( x , y ) 为抛物线上第一象限内的一个动点.

(1)求抛物线所对应的函数表达式;

(2)当 ΔBCD 的面积为3时,求点 D 的坐标;

(3)过点 D DE BC ,垂足为点 E ,是否存在点 D ,使得 ΔCDE 中的某个角等于 ABC 的2倍?若存在,求点 D 的横坐标;若不存在,请说明理由.

出关于 x 的一元二次方程,解之取其非零值可得出点 D 的横坐标.依此即可得解.

来源:2020年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = 1 2 x + 3 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = 1 3 x 2 + bx + c 经过坐标原点和点 A ,顶点为点 M

(1)求抛物线的关系式及点 M 的坐标;

(2)点 E 是直线 AB 下方的抛物线上一动点,连接 EB EA ,当 ΔEAB 的面积等于 25 2 时,求 E 点的坐标;

(3)将直线 AB 向下平移,得到过点 M 的直线 y = mx + n ,且与 x 轴负半轴交于点 C ,取点 D ( 2 , 0 ) ,连接 DM ,求证: ADM ACM = 45 °

来源:2021年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b c 为常数).

(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;

(2)若 b 2 - c = 0 ,当 b - 3 x b 时,二次函数的最小值为21,求 b 的值;

(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 x 1 时,总有 y 2 y 1 ,求实数 m 的最小值.

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C

(1)求抛物线的解析式;

(2) P 是线段 AC 上一动点,且不与点 A C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m

①当△ A ' MN ΔOAB 内部时,求 m 的取值范围;

②是否存在点 P ,使 S A ' MN = 5 6 S OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.

来源:2020年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x + 1 ) 2 + 4 ( a 0 ) x 轴交于 A C 两点,与直线 y = x 1 交于 A B 两点,直线 AB 与抛物线的对称轴交于点 E

(1)求抛物线的解析式;

(2)若点 P 在直线 AB 上方的抛物线上运动.

①点 P 在什么位置时, ΔABP 的面积最大,求出此时点 P 的坐标;

②当点 P 与点 C 重合时,连接 PE ,将 ΔPEB 补成矩形,使 ΔPEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

来源:2017年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + c A ( 2 , 3 ) B ( 4 , 3 ) C ( 6 , 5 ) 三点.

(1)求抛物线的表达式;

(2)如图①,抛物线上一点 D 在线段 AC 的上方, DE AB AC 于点 E ,若满足 DE AE = 5 2 ,求点 D 的坐标;

(3)如图②, F 为抛物线顶点,过 A 作直线 l AB ,若点 P 在直线 l 上运动,点 Q x 轴上运动,是否存在这样的点 P Q ,使得以 B P Q 为顶点的三角形与 ΔABF 相似,若存在,求 P Q 的坐标,并求此时 ΔBPQ 的面积;若不存在,请说明理由.

来源:2017年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y x 2 + 2 m + 1 x + m ( m - 3 ) m为常数, 1 m 4 A (﹣ m - 1 y 1 B m 2 , y 2 C (﹣ m y 3 是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P PH a H

(1)用含m的代数式表示抛物线的顶点坐标;

(2)若无论m取何值,抛物线与直线 y x - km k为常数)有且仅有一个公共点,求k的值;

(3)当 1 PH 6 时,试比较y1y2y3之间的大小.

来源:2016年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题