优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式 / 解答题
初中数学

如图,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线经过两点且与轴的负半轴交于点

(1)求该抛物线的解析式;

(2)若点为直线上方抛物线上的一个动点,当时,求点的坐标;

(3)已知分别是直线和抛物线上的动点,当以为顶点的四边形是平行四边形时,直接写出所有符合条件的点的坐标.

来源:2019年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,直线 y = kx + 3 分别交 x 轴、 y 轴于 A B 两点,经过 A B 两点的抛物线 y = - x 2 + bx + c x 轴的正半轴相交于点 C ( 1 , 0 )

(1)求抛物线的解析式;

(2)若 P 为线段 AB 上一点, APO = ACB ,求 AP 的长;

(3)在(2)的条件下,设 M y 轴上一点,试问:抛物线上是否存在点 N ,使得以 A P M N 为顶点的四边形为平行四边形?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,点为坐标原点,抛物线轴交于点,与轴交于点

(1)直接写出抛物线的解析式及其对称轴;

(2)如图2,连接,设点是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点于点,交轴于点,过点于点,交轴于点.设线段的长为,求的函数关系式,并注明的取值范围;

(3)在(2)的条件下,若的面积为

①求点的坐标;

②设为直线上一动点,连接,直线交直线于点,则点在运动过程中,在抛物线上是否存在点,使得为等腰直角三角形?若存在,请直接写出点及其对应的点的坐标;若不存在,请说明理由.

来源:2019年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 5 3 x + c ( a > 0 ) 的图象与 x 轴相交于不同的两点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < x 2

(1)若抛物线的对称轴为 x = 3 ,求 a 的值;

(2)若 a = 15 ,求 c 的取值范围;

(3)若该抛物线与 y 轴相交于点 D ,连接 BD ,且 OBD = 60 ° ,抛物线的对称轴 l x 轴相交于点 E ,点 F 是直线 l 上的一点,点 F 的纵坐标为 3 + 1 2 a ,连接 AF ,满足 ADB = AFE ,求该二次函数的解析式.

来源:2018年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,平行四边形的顶点的坐标分别为,经过两点的抛物线与轴的一个交点的坐标为

(1)求该抛物线的解析式;

(2)若的平分线交于点,交抛物线的对称轴于点,点轴上一动点,当的值最小时,求点的坐标;

(3)在(2)的条件下,过点的垂线交于点,点分别为抛物线及其对称轴上的动点,是否存在这样的点,使得以点为顶点的四边形为平行四边形?若存在,直接写出点的坐标,若不存在,说明理由.

来源:2019年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,抛物线 y = a x 2 + bx + c 与坐标轴分别交于点 A ( 0 , 6 ) B ( 6 , 0 ) C ( 2 , 0 ) ,点 P 是线段 AB 上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点 P 运动到什么位置时, ΔPAB 的面积有最大值?

(3)过点 P x 轴的垂线,交线段 AB 于点 D ,再过点 P PE / / x 轴交抛物线于点 E ,连接 DE ,请问是否存在点 P 使 ΔPDE 为等腰直角三角形?若存在,求出点 P 的坐标;若不存在,说明理由.

来源:2018年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 F : y = x 2 + bx + c 的图象经过坐标原点 O ,且与 x 轴另一交点为 ( 3 3 0 )

(1) 求抛物线 F 的解析式;

(2) 如图 1 ,直线 l : y = 3 3 x + m ( m > 0 ) 与抛物线 F 相交于点 A ( x 1 y 1 ) 和点 B ( x 2 y 2 ) (点 A 在第二象限) ,求 y 2 y 1 的值 (用 含 m 的式子表示) ;

(3) 在 (2) 中, 若 m = 4 3 ,设点 A ' 是点 A 关于原点 O 的对称点, 如图 2 .

①判断△ AA ' B 的形状, 并说明理由;

②平面内是否存在点 P ,使得以点 A B A ' P 为顶点的四边形是菱形?若存在, 求出点 P 的坐标;若不存在, 请说明理由 .

来源:2018年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = 1 2 x + 3 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 y = 1 3 x 2 + bx + c 经过坐标原点和点 A ,顶点为点 M

(1)求抛物线的关系式及点 M 的坐标;

(2)点 E 是直线 AB 下方的抛物线上一动点,连接 EB EA ,当 ΔEAB 的面积等于 25 2 时,求 E 点的坐标;

(3)将直线 AB 向下平移,得到过点 M 的直线 y = mx + n ,且与 x 轴负半轴交于点 C ,取点 D ( 2 , 0 ) ,连接 DM ,求证: ADM ACM = 45 °

来源:2021年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b c 为常数).

(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;

(2)若 b 2 - c = 0 ,当 b - 3 x b 时,二次函数的最小值为21,求 b 的值;

(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 x 1 时,总有 y 2 y 1 ,求实数 m 的最小值.

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,抛物线 y = a x 2 + bx + c 的顶点是 A ( 1 , 3 ) ,将 OA 绕点 O 顺时针旋转 90 ° 后得到 OB ,点 B 恰好在抛物线上, OB 与抛物线的对称轴交于点 C

(1)求抛物线的解析式;

(2) P 是线段 AC 上一动点,且不与点 A C 重合,过点 P 作平行于 x 轴的直线,与 ΔOAB 的边分别交于 M N 两点,将 ΔAMN 以直线 MN 为对称轴翻折,得到△ A ' MN ,设点 P 的纵坐标为 m

①当△ A ' MN ΔOAB 内部时,求 m 的取值范围;

②是否存在点 P ,使 S A ' MN = 5 6 S OA ' B ,若存在,求出满足条件 m 的值;若不存在,请说明理由.

来源:2020年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x + 1 ) 2 + 4 ( a 0 ) x 轴交于 A C 两点,与直线 y = x 1 交于 A B 两点,直线 AB 与抛物线的对称轴交于点 E

(1)求抛物线的解析式;

(2)若点 P 在直线 AB 上方的抛物线上运动.

①点 P 在什么位置时, ΔABP 的面积最大,求出此时点 P 的坐标;

②当点 P 与点 C 重合时,连接 PE ,将 ΔPEB 补成矩形,使 ΔPEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

来源:2017年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + c A ( 2 , 3 ) B ( 4 , 3 ) C ( 6 , 5 ) 三点.

(1)求抛物线的表达式;

(2)如图①,抛物线上一点 D 在线段 AC 的上方, DE AB AC 于点 E ,若满足 DE AE = 5 2 ,求点 D 的坐标;

(3)如图②, F 为抛物线顶点,过 A 作直线 l AB ,若点 P 在直线 l 上运动,点 Q x 轴上运动,是否存在这样的点 P Q ,使得以 B P Q 为顶点的三角形与 ΔABF 相似,若存在,求 P Q 的坐标,并求此时 ΔBPQ 的面积;若不存在,请说明理由.

来源:2017年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y x 2 + 2 m + 1 x + m ( m - 3 ) m为常数, 1 m 4 A (﹣ m - 1 y 1 B m 2 , y 2 C (﹣ m y 3 是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P PH a H

(1)用含m的代数式表示抛物线的顶点坐标;

(2)若无论m取何值,抛物线与直线 y x - km k为常数)有且仅有一个公共点,求k的值;

(3)当 1 PH 6 时,试比较y1y2y3之间的大小.

来源:2016年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题