如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)点是抛物线上一动点,过点作轴的垂线,交直线于点,设点的横坐标为.
①当是直角三角形时,求点的坐标;
②作点关于点的对称点,则平面内存在直线,使点,,到该直线的距离都相等.当点在轴右侧的抛物线上,且与点不重合时,请直接写出直线的解析式.,可用含的式子表示)
如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)过点的直线交直线于点.
①当时,过抛物线上一动点(不与点,重合),作直线的平行线交直线于点,若以点,,,为顶点的四边形是平行四边形,求点的横坐标;
②连接,当直线与直线的夹角等于的2倍时,请直接写出点的坐标.
如图,抛物线交轴于、两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线交轴于点,交轴于点,交抛物线的对称轴于点.
(1)求出,,的值.
(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.
(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.
如图,直线与轴交于点,与轴交于点,抛物线经过点,.
(1)求点的坐标和抛物线的解析式;
(2)为轴上一动点,过点且垂直于轴的直线与直线及抛物线分别交于点,.
①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;
②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.
如图1,在平面直角坐标系中,抛物线与直线交于点和点,与轴交于点.
(1)求,的值及抛物线的解析式;
(2)在图1中,把平移,始终保持点的对应点在抛物线上,点,的对应点分别为,,连接,若点恰好在直线上,求线段的长度;
(3)如图2,在抛物线上是否存在点(不与点重合),使和的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
如图1,直线 交 轴于点 ,交 轴于点 ,抛物线 经过点 ,交 轴于点 .点 为抛物线上一个动点,过点 作 轴的垂线 ,过点 作 于点 ,连接 ,设点 的横坐标为 .
(1)求抛物线的解析式;
(2)当 为等腰直角三角形时,求线段 的长;
(3)如图2,将 绕点 逆时针旋转,得到△ ,且旋转角 ,当点 的对应点 落在坐标轴上时,请直接写出点 的坐标.
抛物线 经过 , ,交 轴于点 .
(1)求抛物线的解析式;
(2)如图1,点 为直线 上方抛物线上一个动点,连接 , .设 的面积为 ,点 的横坐标为 ,试求 关于 的函数解析式,并求出 的最大值;
(3)如图2,连接 ,点 为抛物线内一点,在抛物线上是否存在点 ,使直线 与 轴相交所成的锐角等于 ?若存在,请直接写出点 的横坐标;若不存在,请说明理由.
如图1,过点的抛物线与直线交于点.点是线段上一动点,过点作轴的垂线,垂足为点,交抛物线于点.设的面积为,点的横坐标为.
(1)请直接写出的值及抛物线的解析式.
(2)为探究最大时点的位置,甲、乙两同学结合图形给出如下解析:
甲:借助的长与三角形面积公式,求出关于的函数关系式,可确定点的位置.
乙:当点运动到点或点时,的值可看作0,则当点运动到中点时,最大,即最大时,点为的中点.
请参考甲的方法求出最大时点的坐标,进而判断乙的猜想是否正确,并说明理由.
(3)拓展探究:如图2,直线与任意抛物线相交于、两点,是线段上的一个动点,过点作抛物线对称轴的平行线,交该抛物线于点.当的面积最大时,点一定是线段的中点吗?试作出判断并说明理由.
如图,抛物线与轴相交于,两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
(1)求此抛物线的解析式;
(2)当点位于轴下方时,求面积的最大值;
(3)设此抛物线在点与点之间部分(含点和点最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.
《函数的图象与性质》拓展学习片段展示:
【问题】如图①,在平面直角坐标系中,抛物线经过原点,与轴的另一个交点为,则 .
【操作】将图①中抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为,如图②.直接写出图象对应的函数解析式.
【探究】在图②中,过点作直线平行于轴,与图象的交点从左至右依次为点,,,,如图③.求图象在直线上方的部分对应的函数随增大而增大时的取值范围.
【应用】是图③中图象上一点,其横坐标为,连接,.直接写出的面积不小于1时的取值范围.
如图1,在平面直角坐标系中,点在轴正半轴上,的长度为,以为边向上作等边三角形,抛物线经过点,,三点
(1)当时, ,当时, ;
(2)根据(1)中的结果,猜想与的关系,并证明你的结论;
(3)如图2,在图1的基础上,作轴的平行线交抛物线于、两点,的长度为,当为等腰直角三角形时,和的关系式为 ;
(4)利用(2)(3)中的结论,求与的面积比.
如图,若是正数,直线与轴交于点;直线与轴交于点;抛物线的顶点为,且与轴右交点为.
(1)若,求的值,并求此时的对称轴与的交点坐标;
(2)当点在下方时,求点与距离的最大值;
(3)设,点,,,,,分别在,和上,且是,的平均数,求点,与点间的距离;
(4)在和所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出和时“美点”的个数.
试题篮
()