温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排 人生产乙产品.
(1)根据信息填表:
产品种类 |
每天工人数(人 |
每天产量(件 |
每件产品可获利润(元 |
甲 |
|
|
15 |
乙 |
|
|
|
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润 (元 的最大值及相应的 值.
某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第 个月该原料药的月销售量为 (单位:吨), 与 之间存在如图所示的函数关系,其图象是函数 的图象与线段 的组合;设第 个月销售该原料药每吨的毛利润为 (单位:万元), 与 之间满足如下关系:
(1)当 时,求 关于 的函数解析式;
(2)设第 个月销售该原料药的月毛利润为 (单位:万元)
①求 关于 的函数解析式;
②该药厂销售部门分析认为, 是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量 的最小值和最大值.
学校拓展小组研制了绘图智能机器人(如图 ,顺次输入点 , , 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.
(1) , , ;
(2) , , .
某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为 轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量 (辆 小时)指单位时间内通过道路指定断面的车辆数;速度 (千米 小时)指通过道路指定断面的车辆速度;密度 (辆 千米)指通过道路指定断面单位长度内的车辆数.
为配合大数据治堵行动,测得某路段流量 与速度 之间关系的部分数据如下表:
速度 (千米 小时) |
|
5 |
10 |
20 |
32 |
40 |
48 |
|
流量 (辆 小时) |
|
550 |
1000 |
1600 |
1792 |
1600 |
1152 |
|
(1)根据上表信息,下列三个函数关系式中,刻画 , 关系最准确的是 (只填上正确答案的序号)
① ;② ;③ .
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知 , , 满足 ,请结合(1)中选取的函数关系式继续解决下列问题.
①市交通运行监控平台显示,当 时道路出现轻度拥堵.试分析当车流密度 在什么范围时,该路段将出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离 (米 均相等,求流量 最大时 的值.
如图1,在 中, ,点 从点 出发以 的速度沿折线 运动,点 从点 出发以 的速度沿 运动, , 两点同时出发,当某一点运动到点 时,两点同时停止运动.设运动时间为 , 的面积为 , 关于 的函数图象由 , 两段组成,如图2所示.
(1)求 的值;
(2)求图2中图象 段的函数表达式;
(3)当点 运动到线段 上某一段时 的面积,大于当点 在线段 上任意一点时 的面积,求 的取值范围.
甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 点正上方 的 处发出一球,羽毛球飞行的高度 与水平距离 之间满足函数表达式 ,已知点 与球网的水平距离为 ,球网的高度为 .
(1)当 时,①求 的值;②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点 的水平距离为 ,离地面的高度为 的 处时,乙扣球成功,求 的值.
某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为 .设饲养室长为 ,占地面积为 .
(1)如图1,问饲养室长 为多少时,占地面积 最大?
(2)如图2,现要求在图中所示位置留 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多 就行了.”请你通过计算,判断小敏的说法是否正确.
湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本 放养总费用 收购成本).
(1)设每天的放养费用是 万元,收购成本为 万元,求 和 的值;
(2)设这批淡水鱼放养 天后的质量为 ,销售单价为 元 .根据以往经验可知: 与 的函数关系为 ; 与 的函数关系如图所示.
①分别求出当 和 时, 与 的函数关系式;
②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润 销售总额 总成本)
如图1,地面 上两根等长立柱 , 之间悬挂一根近似成抛物线 的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离 为3米的位置处用一根立柱 撑起绳子(如图 ,使左边抛物线 的最低点距 为1米,离地面1.8米,求 的长;
(3)将立柱 的长度提升为3米,通过调整 的位置,使抛物线 对应函数的二次项系数始终为 ,设 离 的距离为 ,抛物线 的顶点离地面距离为 ,当 时,求 的取值范围.
如图1,地面 上两根等长立柱 , 之间悬挂一根近似成抛物线 的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离 为3米的位置处用一根立柱 撑起绳子(如图 ,使左边抛物线 的最低点距 为1米,离地面1.8米,求 的长;
(3)将立柱 的长度提升为3米,通过调整 的位置,使抛物线 对应函数的二次项系数始终为 ,设 离 的距离为 ,抛物线 的顶点离地面距离为 ,当 时,求 的取值范围.
课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为 ,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为 时,透光面积最大值约为 .
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为 ,利用图3,解答下列问题:
(1)若 为 ,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.
把一个足球垂直水平地面向上踢,时间为 (秒 时该足球距离地面的高度 (米 适用公式 .
(1)当 时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求 ;
(3)若存在实数 , 当 或 时,足球距离地面的高度都为 (米 ,求 的取值范围.
对于三个数 , , ,用 , , 表示这三个数的中位数,用 , , 表示这三个数中最大数,例如: , , , , , , , ,
解决问题:
(1)填空: , , ,如果 , , ,则 的取值范围为 ;
(2)如果 , , , , ,求 的值;
(3)如果 , , , , ,求 的值.
试题篮
()