某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量 (袋 与销售单价 (元 之间满足一次函数关系,部分数据如表所示,其中 ,另外每天还需支付其他各项费用80元.
销售单价 (元 |
3.5 |
5.5 |
销售量 (袋 |
280 |
120 |
(1)请直接写出 与 之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于 .试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为 本,销售单价为 元.
(1)请直接写出 与 之间的函数关系式和自变量 的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润 元最大?最大利润是多少元?
某商场销售一种小商品,每件进货价为190元,调查发现,当销售价为210元时,平均每天能销售8件;当销售价每降低2元时,平均每天就能多销售4件,设每件小商品降价 元,平均每天销售 件.
(1)求 与 之间的函数关系式;
(2)商场要想使这种小商品平均每天的销售利润达到280元,求每件小商品的销售价应定为多少元?
(3)设每天的销售总利润为 元,求 与 之间的函数关系式;每件小商品降价多少元时,每天的总利润最大?最大利润是多少?
【观察】 , , , , , , , , , , , , .
【发现】根据你的阅读回答问题:
(1)上述内容中,两数相乘,积的最大值为 ;
(2)设参与上述运算的第一个因数为 ,第二个因数为 ,用等式表示 与 的数量关系是 .
【类比】观察下列两数的积: , , , , , , , , , , .
猜想 的最大值为 ,并用你学过的知识加以证明.
某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价 (元 不低于60元,而市场要求 不得超过100元.
(1)求出每天的销售量 (件 与销售单价 (元 之间的函数关系式,并写出 的取值范围;
(2)求出每天的销售利润 (元 与销售单价 (元 之间的函数关系式,并求出当 为多少时,每天的销售利润最大,并求出最大值;
(3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价 最低可定为多少元?
服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价 (元 件)与批发数量 (件 为正整数)之间所满足的函数关系如图所示.
(1)求 与 之间所满足的函数关系式,并写出 的取值范围;
(2)设服装厂所获利润为 (元 ,若 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?
某公司去年年初投资1000万元引进先进的生产线生产某种新产品.根据对该产品的市场分析,生产每件该产品需成本60元,产品售价不超过200元 件,且产品的年销售量 (万件)是产品售价 (元 件)的一次函数,其部分对应数据如下表所示:
产品售价 (元 件) |
|
120 |
140 |
160 |
180 |
|
销售量 (万件) |
|
9 |
8 |
7 |
6 |
|
(1)求 关于 的函数解析式;
(2)去年该公司是盈利还是亏损?并求出盈利最多或亏损最少时的产品售价;
(3)在(2)的前提下,若公司想使去年和今年生产的新产品共获利395万元,那么该公司今年应怎样重新确定产品售价?
如图,已知 为 的直径, ,点 和点 是 上关于直线 对称的两个点,连接 、 ,且 ,直线 和直线 相交于点 ,过点 作直线 与线段 的延长线相交于点 ,与直线 相交于点 ,且 .
(1)求证:直线 为 的切线;
(2)若点 为线段 上一点,连接 ,满足 ,
① ;
②求 的最大值.
如图1,在矩形 中, 是 的中点,以点 为直角顶点的直角三角形 的两边 , 分别过点 , , .
(1)求证: ;
(2)将 绕点 按顺时针方向旋转,当旋转到 与 重合时停止转动,若 , 分别与 , 相交于点 , (如图 .
①求证: ;
②若 ,求 面积的最大值;
③当旋转停止时,点 恰好在 上(如图 ,求 的值.
一名在校大学生利用“互联网 ”自主创业,销售一种产品,这种产品的成本价10元 件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元 件,市场调查发现,该产品每天的销售量 (件 与销售价 (元 件)之间的函数关系如图所示.
(1)求 与 之间的函数关系式,并写出自变量 的取值范围;
(2)求每天的销售利润 (元 与销售价 (元 件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
如图所示, 的直角顶点 在函数 的图象上,顶点 、 在函数 的图象上, 轴,连接 , ,记 的面积为 , 的面积为 ,设 .
①求 的值以及 关于 的表达式;
②若用 和 分别表示函数 的最大值和最小值,令 ,其中 为实数,求 .
若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若 , , 三点均在函数 为常数, 的图象上,且这三点的纵坐标 , , 构成“和谐三组数”,求实数 的值;
(3)若直线 与 轴交于点 , ,与抛物线 交于 , , , 两点.
①求证: , , 三点的横坐标 , , 构成“和谐三组数”;
②若 , ,求点 , 与原点 的距离 的取值范围.
某种蔬菜的销售单价 与销售月份 之间的关系如图1所示,成本 与销售月份 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益 售价 成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离 (单位: 与滑行时间 (单位: 之间的关系可以近似的用二次函数来表示.
滑行时间 |
0 |
1 |
2 |
3 |
|
滑行距离 |
0 |
4 |
12 |
24 |
|
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约 ,他需要多少时间才能到达终点?
(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.
试题篮
()