优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用 / 解答题
初中数学

小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体 ACB 是抛物线的一部分,抛物线的顶点 C y 轴上,杯口直径 AB = 4 ,且点 A B 关于 y 轴对称,杯脚高 CO = 4 ,杯高 DO = 8 ,杯底 MN x 轴上.

(1)求杯体 ACB 所在抛物线的函数表达式(不必写出 x 的取值范围);

(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体 A ' CB ' 所在抛物线形状不变,杯口直径 A ' B ' / / AB ,杯脚高 CO 不变,杯深 CD ' 与杯高 OD ' 之比为0.6,求 A ' B ' 的长.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

某游乐场的圆形喷水池中心 O 有一雕塑 OA ,从 A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为 x 轴,点 O 为原点建立直角坐标系,点 A y 轴上, x 轴上的点 C D 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为 y = - 1 6 ( x - 5 ) 2 + 6

(1)求雕塑高 OA

(2)求落水点 C D 之间的距离.

(3)若需要在 OD 上的点 E 处竖立雕塑 EF OE = 10 m EF = 1 . 8 m EF OD .问:顶部 F 是否会碰到水柱?请通过计算说明.

来源:2021年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.

(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;

(2)若该景区仅有 A B 两个景点,售票处出示的三种购票方式如下表所示:

购票方式

可游玩景点

A

B

A 和     B

门票价格

100元     /

80元     /

160元     /

据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.

①若丙种门票价格下降10元,求景区六月份的门票总收入;

②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量 y (瓶 ) 与每瓶售价 x (元 ) 之间存在一次函数关系(其中 10 x 21 ,且 x 为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.

(1)求 y x 之间的函数关系式;

(2)设该药店销售该消毒液每天的销售利润为 w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

某服装店以每件30元的价格购进一批 T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设 T 恤的销售单价提高 x 元.

(1)服装店希望一个月内销售该种 T 恤能获得利润3360元,并且尽可能减少库存,问 T 恤的销售单价应提高多少元?

(2)当销售单价定为多少元时,该服装店一个月内销售这种 T 恤获得的利润最大?最大利润是多少元?

来源:2021年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元 / 千克,根据市场调查发现,批发价定为48元 / 千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.

(1)写出工厂每天的利润 W 元与降价 x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?

(2)当降价多少元时,工厂每天的利润最大,最大为多少元?

(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.

(1)求甲、乙两种商品每箱各盈利多少元?

(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?

来源:2021年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

某商家正在热销一种商品,其成本为30元 / 件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元 / 件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量 y (件 ) 与售价 x (元 / 件)满足如图所示的函数关系(其中 40 x 70 ,且 x 为整数).

(1)写出 y x 的函数关系式;

(2)当售价为多少时,商家所获利润最大,最大利润是多少?

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量 y (桶 ) 与销售单价 x (元 ) 之间满足一次函数关系,其图象如图所示.

(1)求 y x 之间的函数表达式;

(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润 = 销售价 - 进价)

来源:2020年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

某水果商店销售一种进价为40元 / 千克的优质水果,若售价为50元 / 千克,则一个月可售出500千克;若售价在50元 / 千克的基础上每涨价1元,则月销售量就减少10千克.

(1)当售价为55元 / 千克时,每月销售水果多少千克?

(2)当月利润为8750元时,每千克水果售价为多少元?

(3)当每千克水果售价为多少元时,获得的月利润最大?

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,排球场长为 18 m ,宽为 9 m ,网高为 2 . 24 m ,队员站在底线 O 点处发球,球从点 O 的正上方 1 . 9 m C 点发出,运动路线是抛物线的一部分,当球运动到最高点 A 时,高度为 2 . 88 m ,即 BA = 2 . 88 m ,这时水平距离 OB = 7 m ,以直线 OB x 轴,直线 OC y 轴,建立平面直角坐标系,如图2.

(1)若球向正前方运动(即 x 轴垂直于底线),求球运动的高度 y ( m ) 与水平距离 x ( m ) 之间的函数关系式(不必写出 x 取值范围).并判断这次发球能否过网?是否出界?说明理由.

(2)若球过网后的落点是对方场地①号位内的点 P (如图1,点 P 距底线 1 m ,边线 0 . 5 m ) ,问发球点 O 在底线上的哪个位置?(参考数据: 2 1 . 4 )

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, ΔABC 的顶点 A C 分别是直线 y = - 8 3 x + 4 与坐标轴的交点,点 B 的坐标为 ( - 2 , 0 ) ,点 D 是边 AC 上的一点, DE BC 于点 E ,点 F 在边 AB 上,且 D F 两点关于 y 轴上的某点成中心对称,连结 DF EF .设点 D 的横坐标为 m E F 2 l ,请探究:

①线段 EF 长度是否有最小值.

ΔBEF 能否成为直角三角形.

小明尝试用“观察 - 猜想 - 验证 - 应用”的方法进行探究,请你一起来解决问题.

(1)小明利用“几何画板”软件进行观察,测量,得到 l m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图 2 ) .请你在图2中连线,观察图象特征并猜想 l m 可能满足的函数类别.

(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出 l 关于 m 的函数表达式及自变量的取值范围,并求出线段 EF 长度的最小值.

(3)小明通过观察,推理,发现 ΔBEF 能成为直角三角形,请你求出当 ΔBEF 为直角三角形时 m 的值.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元 / 件,每天销售 y (件 ) 与销售单价 x (元 ) 之间存在一次函数关系,如图所示.

(1)求 y x 之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.

(1)当每件的销售价为52元时,该纪念品每天的销售数量为  件;

(2)当每件的销售价 x 为多少时,销售该纪念品每天获得的利润 y 最大?并求出最大利润.

来源:2018年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元 / 千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量 y (千克)与销售单价 x (元 / 千克)之间的函数关系如图所示.

(1)求 y x 的函数关系式,并写出 x 的取值范围;

(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用解答题