优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用 / 解答题
初中数学

端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.

(1)求猪肉粽和豆沙粽每盒的进价;

(2)设猪肉粽每盒售价 x ( 50 x 65 ) y 表示该商家每天销售猪肉粽的利润(单位:元),求 y 关于 x 的函数解析式并求最大利润.

来源:2021年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量 y (桶 ) 与销售单价 x (元 ) 之间满足一次函数关系,其图象如图所示.

(1)求 y x 之间的函数表达式;

(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润 = 销售价 - 进价)

来源:2020年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

某水果商店销售一种进价为40元 / 千克的优质水果,若售价为50元 / 千克,则一个月可售出500千克;若售价在50元 / 千克的基础上每涨价1元,则月销售量就减少10千克.

(1)当售价为55元 / 千克时,每月销售水果多少千克?

(2)当月利润为8750元时,每千克水果售价为多少元?

(3)当每千克水果售价为多少元时,获得的月利润最大?

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

用各种盛水容器可以制作精致的家用流水景观(如图 1 )

科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为 H (单位: cm ) ,如果在离水面竖直距离为 h (单位: cm ) 的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离) s (单位: cm ) h 的关系式为 s 2 = 4 h ( H - h )

应用思考:现用高度为 20 cm 的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离 hcm 处开一个小孔.

(1)写出 s 2 h 的关系式;并求出当 h 为何值时,射程 s 有最大值,最大射程是多少?

(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为 a b ,要使两孔射出水的射程相同,求 a b 之间的关系式;

(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加 16 cm ,求垫高的高度及小孔离水面的竖直距离.

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,排球场长为 18 m ,宽为 9 m ,网高为 2 . 24 m ,队员站在底线 O 点处发球,球从点 O 的正上方 1 . 9 m C 点发出,运动路线是抛物线的一部分,当球运动到最高点 A 时,高度为 2 . 88 m ,即 BA = 2 . 88 m ,这时水平距离 OB = 7 m ,以直线 OB x 轴,直线 OC y 轴,建立平面直角坐标系,如图2.

(1)若球向正前方运动(即 x 轴垂直于底线),求球运动的高度 y ( m ) 与水平距离 x ( m ) 之间的函数关系式(不必写出 x 取值范围).并判断这次发球能否过网?是否出界?说明理由.

(2)若球过网后的落点是对方场地①号位内的点 P (如图1,点 P 距底线 1 m ,边线 0 . 5 m ) ,问发球点 O 在底线上的哪个位置?(参考数据: 2 1 . 4 )

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, ΔABC 的顶点 A C 分别是直线 y = - 8 3 x + 4 与坐标轴的交点,点 B 的坐标为 ( - 2 , 0 ) ,点 D 是边 AC 上的一点, DE BC 于点 E ,点 F 在边 AB 上,且 D F 两点关于 y 轴上的某点成中心对称,连结 DF EF .设点 D 的横坐标为 m E F 2 l ,请探究:

①线段 EF 长度是否有最小值.

ΔBEF 能否成为直角三角形.

小明尝试用“观察 - 猜想 - 验证 - 应用”的方法进行探究,请你一起来解决问题.

(1)小明利用“几何画板”软件进行观察,测量,得到 l m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图 2 ) .请你在图2中连线,观察图象特征并猜想 l m 可能满足的函数类别.

(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出 l 关于 m 的函数表达式及自变量的取值范围,并求出线段 EF 长度的最小值.

(3)小明通过观察,推理,发现 ΔBEF 能成为直角三角形,请你求出当 ΔBEF 为直角三角形时 m 的值.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

在篮球比赛中,东东投出的球在点 A 处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点 B

(1)求该抛物线的函数表达式.

(2)当球运动到点 C 时被东东抢到, CD x 轴于点 D CD = 2 . 6 m

①求 OD 的长.

②东东抢到球后,因遭对方防守无法投篮,他在点 D 处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点 E ( 4 , 1 . 3 ) .东东起跳后所持球离地面高度 h 1 ( m ) (传球前)与东东起跳后时间 t ( s ) 满足函数关系式 h 1 = - 2 ( t - 0 . 5 ) 2 + 2 . 7 ( 0 t 1 ) ;小戴在点 F ( 1 . 5 , 0 ) 处拦截,他比东东晚 0 . 3 s 垂直起跳,其拦截高度 h 2 ( m ) 与东东起跳后时间 t ( s ) 的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点 E ?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图(1)放置两个全等的含有 30 ° 角的直角三角板 ABC DEF ( B = E = 30 ° ) ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点 C 与点 E 重合时移动终止),移动过程中始终保持点 B F C E 在同一条直线上,如图(2), AB DF DE 分别交于点 P M AC DE 交于点 Q ,其中 AC = DF = 3 ,设三角板 ABC 移动时间为 x 秒.

(1)在移动过程中,试用含 x 的代数式表示 ΔAMQ 的面积;

(2)计算 x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?

来源:2020年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元 / 件,每天销售 y (件 ) 与销售单价 x (元 ) 之间存在一次函数关系,如图所示.

(1)求 y x 之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

来源:2018年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.

(1)当 t = 1 3 秒时,点 Q 的坐标是  

(2)在运动过程中,设正方形 PQMN ΔAOB 重叠部分的面积为 S ,求 S t 的函数表达式;

(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.

来源:2018年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.

(1)当每件的销售价为52元时,该纪念品每天的销售数量为  件;

(2)当每件的销售价 x 为多少时,销售该纪念品每天获得的利润 y 最大?并求出最大利润.

来源:2018年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元 / 千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量 y (千克)与销售单价 x (元 / 千克)之间的函数关系如图所示.

(1)求 y x 的函数关系式,并写出 x 的取值范围;

(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排 x 人生产乙产品.

(1)根据信息填表:

产品种类

每天工人数(人 )

每天产量(件 )

每件产品可获利润(元 )

  

  

15

x

x

  

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润 W (元 ) 的最大值及相应的 x 值.

来源:2018年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第 t 个月该原料药的月销售量为 P (单位:吨), P t 之间存在如图所示的函数关系,其图象是函数 P = 120 t + 4 ( 0 < t 8 ) 的图象与线段 AB 的组合;设第 t 个月销售该原料药每吨的毛利润为 Q (单位:万元), Q t 之间满足如下关系: Q = 2 t + 8 , 0 < t 12 t + 44 , 12 < t 24

(1)当 8 < t 24 时,求 P 关于 t 的函数解析式;

(2)设第 t 个月销售该原料药的月毛利润为 w (单位:万元)

①求 w 关于 t 的函数解析式;

②该药厂销售部门分析认为, 336 w 513 是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量 P 的最小值和最大值.

来源:2018年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

学校拓展小组研制了绘图智能机器人(如图 1 ) ,顺次输入点 P 1 P 2 P 3 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.

(1) P 1 ( 4 , 0 ) P 2 ( 0 , 0 ) P 3 ( 6 , 6 )

(2) P 1 ( 0 , 0 ) P 2 ( 4 , 0 ) P 3 ( 6 , 6 )

来源:2018年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用解答题