优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数的应用
初中数学

如图(1)放置两个全等的含有 30 ° 角的直角三角板 ABC DEF ( B = E = 30 ° ) ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点 C 与点 E 重合时移动终止),移动过程中始终保持点 B F C E 在同一条直线上,如图(2), AB DF DE 分别交于点 P M AC DE 交于点 Q ,其中 AC = DF = 3 ,设三角板 ABC 移动时间为 x 秒.

(1)在移动过程中,试用含 x 的代数式表示 ΔAMQ 的面积;

(2)计算 x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?

来源:2020年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中, O 为原点, ΔOAB 是等腰直角三角形, OBA = 90 ° BO = BA ,顶点 A ( 4 , 0 ) ,点 B 在第一象限,矩形 OCDE 的顶点 E ( - 7 2 0 ) ,点 C y 轴的正半轴上,点 D 在第二象限,射线 DC 经过点 B

(Ⅰ)如图①,求点 B 的坐标;

(Ⅱ)将矩形 OCDE 沿 x 轴向右平移,得到矩形 O ' C ' D ' E ' ,点 O C D E 的对应点分别为 O ' C ' D ' E ' .设 OO ' = t ,矩形 O ' C ' D ' E ' ΔOAB 重叠部分的面积为 S

①如图②,当点 E ' x 轴正半轴上,且矩形 O ' C ' D ' E ' ΔOAB 重叠部分为四边形时, D ' E ' OB 相交于点 F ,试用含有 t 的式子表示 S ,并直接写出 t 的取值范围;

②当 5 2 t 9 2 时,求 S 的取值范围(直接写出结果即可).

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

公路上正在行驶的甲车,发现前方 20 m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程 s (单位: m ) 、速度 v (单位: m / s ) 与时间 t (单位: s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.

(1)当甲车减速至 9 m / s 时,它行驶的路程是多少?

(2)若乙车以 10 m / s 的速度匀速行驶,两车何时相距最近,最近距离是多少?

来源:2021年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是一座抛物线型拱桥侧面示意图.水面宽 AB 与桥长 CD 均为 24 m ,在距离 D 点6米的 E 处,测得桥面到桥拱的距离 EF 1 . 5 m ,以桥拱顶点 O 为原点,桥面为 x 轴建立平面直角坐标系.

(1)求桥拱顶部 O 离水面的距离.

(2)如图2,桥面上方有3根高度均为 4 m 的支柱 CG OH DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为 1 m

①求出其中一条钢缆抛物线的函数表达式.

②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.

(1)当 t = 1 3 秒时,点 Q 的坐标是  

(2)在运动过程中,设正方形 PQMN ΔAOB 重叠部分的面积为 S ,求 S t 的函数表达式;

(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.

来源:2018年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为      

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图所示,在平面直角坐标系 xOy 中,四边形 OABC 是矩形, OA = 4 OC = 3 ,动点 P 从点 C 出发,沿射线 CB 方向以每秒2个单位长度的速度运动;同时,动点 Q 从点 O 出发,沿 x 轴正半轴方向以每秒1个单位长度的速度运动.设点 P 、点 Q 的运动时间为 t ( s )

(1)当 t = 1 s 时,求经过点 O P A 三点的抛物线的解析式;

(2)当 t = 2 s 时,求 tan QPA 的值;

(3)当线段 PQ 与线段 AB 相交于点 M ,且 BM = 2 AM 时,求 t ( s ) 的值;

(4)连接 CQ ,当点 P Q 在运动过程中,记 ΔCQP 与矩形 OABC 重叠部分的面积为 S ,求 S t 的函数关系式.

来源:2017年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

某商贸公司购进某种商品的成本为20元 / kg ,经过市场调研发现,这种商品在未来40天的销售单价 y (元 / kg ) 与时间 x (天 ) 之间的函数关系式为: y = 0 . 25 x + 30 1 x 20 x 为整数 35 ( 20 < x 40 x 为整数 ) ,且日销量 m ( kg ) 与时间 x (天 ) 之间的变化规律符合一次函数关系,如下表:

时间 x (天 )

1

3

6

10

 日销量 m ( kg )

142

138

132

124

(1)填空: m x 的函数关系为   

(2)哪一天的销售利润最大?最大日销售利润是多少?

(3)在实际销售的前20天中,公司决定每销售 1 kg 商品就捐赠 n 元利润 ( n < 4 ) 给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间 x 的增大而增大,求 n 的取值范围.

来源:2021年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是边长为4的正方形,点 P OA 边上任意一点(与点 O A 不重合),连接 CP ,过点 P PM CP AB 于点 D ,且 PM = CP ,过点 M MN / / AO ,交 BO 于点 N ,连接 ND BM ,设 OP = t

(1)求点 M 的坐标(用含 t 的代数式表示);

(2)试判断线段 MN 的长度是否随点 P 的位置的变化而改变?并说明理由.

(3)当 t 为何值时,四边形 BNDM 的面积最小;

(4)在 x 轴正半轴上存在点 Q ,使得 ΔQMN 是等腰三角形,请直接写出不少于4个符合条件的点 Q 的坐标(用含 t 的式子表示).

来源:2016年贵州省黔南州中考数学试卷
  • 题型:未知
  • 难度:未知

以初速度 v (单位: m / s ) 从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度 h (单位: m ) 与小球的运动时间 t (单位: s ) 之间的关系式是 h = vt - 4 . 9 t 2 .现将某弹性小球从地面竖直向上抛出,初速度为 v 1 ,经过时间 t 1 落回地面,运动过程中小球的最大高度为 h 1 (如图 1 ) ;小球落地后,竖直向上弹起,初速度为 v 2 ,经过时间 t 2 落回地面,运动过程中小球的最大高度为 h 2 (如图 2 ) .若 h 1 = 2 h 2 ,则 t 1 : t 2 =   

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = - 2 x + 2 与坐标轴交于 A B 两点,点 P 是线段 AB 上的一个动点,过点 P y 轴的平行线交直线 y = - x + 3 于点 Q ΔOPQ 绕点 O 顺时针旋转 45 ° ,边 PQ 扫过区域(阴影部分)面积的最大值是 (    )

A.

2 3 π

B.

1 2 π

C.

11 16 π

D.

21 32 π

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量 y (件 ) 是关于售价 x (元 / 件)的一次函数,如表仅列出了该商品的售价 x ,周销售量 y ,周销售利润 W (元 ) 的三组对应值数据.

x

40

70

90

y

180

90

30

W

3600

4500

2100

(1)求 y 关于 x 的函数解析式(不要求写出自变量的取值范围);

(2)若该商品进价 a (元 / 件),售价 x 为多少时,周销售利润 W 最大?并求出此时的最大利润;

(3)因疫情期间,该商品进价提高了 m (元 / 件) ( m > 0 ) ,公司为回馈消费者,规定该商品售价 x 不得超过55(元 / 件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求 m 的值.

来源:2021年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔOAB 是边长为 2 + 3 的等边三角形,其中 O 是坐标原点,顶点 B y 轴正方向上,将 ΔOAB 折叠,使点 A 落在边 OB 上,记为 A ' ,折痕为 EF

(1)当 A ' E / / x 轴时,求点 A ' E 的坐标;

(2)当 A ' E / / x 轴,且抛物线 y = 1 6 x 2 + bx + c 经过点 A ' E 时,求抛物线与 x 轴的交点的坐标;

(3)当点 A ' OB 上运动,但不与点 O B 重合时,能否使△ A ' EF 成为直角三角形?若能,请求出此时点 A ' 的坐标;若不能,请你说明理由.

来源:2018年浙江省杭州市临安市中考数学试卷
  • 题型:未知
  • 难度:未知

红星公司销售一种成本为40元 / 件产品,若月销售单价不高于50元 / 件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为 x (单位:元 / 件),月销售量为 y (单位:万件).

(1)直接写出 y x 之间的函数关系式,并写出自变量 x 的取值范围;

(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?

(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 a 元.已知该公司捐款当月的月销售单价不高于70元 / 件,月销售最大利润是78万元,求 a 的值.

来源:2021年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数的应用试题