优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 含30度角的直角三角形 / 解答题
初中数学

如图①,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F

(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);

(2)若 DF BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;

(3)若 DF AB ,直接写出 BDE 的度数.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = AC ,点 E F G 分别在边 BC CD 上, BE = CG AF 平分 EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).

(1)求证: ΔAEH ΔAGH

(2)当 AB = 12 BE = 4 时.

ΔDGH 周长的最小值;

②若点 O AC 的中点,是否存在直线 OH ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知Rt△ OAB,∠ OAB=90°,∠ ABO=30°,斜边 OB=4,将Rt△ OAB绕点 O顺时针旋转60°,如图1,连接 BC

(1)填空:∠ OBC  °;

(2)如图1,连接 AC,作 OPAC,垂足为 P,求 OP的长度;

(3)如图2,点 MN同时从点 O出发,在△ OCB边上运动, M沿 OCB路径匀速运动, N沿 OBC路径匀速运动,当两点相遇时运动停止,已知点 M的运动速度为1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为 x秒,△ OMN的面积为 y,求当 x为何值时 y取得最大值?最大值为多少?

来源:2018年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

我们定义:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称△的“旋补三角形”,△ 上的中线叫做的“旋补中线”,点叫做“旋补中心”.

特例感知:

(1)在图2,图3中,△的“旋补三角形”, 的“旋补中线”.

①如图2,当为等边三角形时,的数量关系为  

②如图3,当时,则长为  

猜想论证:

(2)在图1中,当为任意三角形时,猜想的数量关系,并给予证明.

拓展应用

(3)如图4,在四边形.在四边形内部是否存在点,使的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.

来源:2017年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学含30度角的直角三角形解答题