如图,把某矩形纸片沿,折叠(点,在边上,点,在边上),使点和点落在边上同一点处,点的对称点为点,点的对称点为点,若,△的面积为4,△的面积为1,则矩形的面积等于 .
如图,在矩形 中, , ,点 从点 出发,以每秒2个单位长度的速度沿 向点 运动,同时点 从点 出发,以每秒1个单位长度的速度沿 向点 运动,当点 到达点 时,点 , 同时停止运动.连接 , ,设点 运动的时间为 ,若 是以 为底的等腰三角形,则 的值为 .
如图,在平面直角坐标系中,矩形 的顶点 , 分别在 轴、 轴上,对角线 轴,反比例函数 的图象经过矩形对角线的交点 .若点 , ,则 的值为
A. |
16 |
B. |
20 |
C. |
32 |
D. |
40 |
如图,在平面直角坐标系 中,有一个由六个边长为1的正方形组成的图案,其中点 , 的坐标分别为 , .若过原点的直线 将这个图案分成面积相等的两部分,则直线 的函数解析式为 .
下列命题正确的是
A. |
A . 平行四边形的对角线互相垂直平分 |
B. |
B . 矩形的对角线互相垂直平分 |
C. |
C . 菱形的对角线互相平分且相等 |
D. |
D . 正方形的对角线互相垂直平分 |
矩形 在平面直角坐标系中的位置如图所示,已知 , ,点 在 轴上,点 在 轴上, 是对角线 上一动点(不与原点重合),连接 ,过点 作 ,交 轴于点 .下列结论:
① ;
②当点 运动到 的中点处时, ;
③在运动过程中, 是一个定值;
④当 为等腰三角形时,点 的坐标为 , .
其中正确结论的个数是
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为的三角形称为,4,型三角形,例如:三边长分别为9,12,15或,,的三角形就是,4,型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片中,,.
第一步:如图2,将图1中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.
第三步:如图4,将图3中的矩形纸片沿折叠,得到△,再沿折叠,折痕为,与折痕交于点,然后展平.
问题解决
(1)请在图2中证明四边形是正方形.
(2)请在图4中判断与的数量关系,并加以证明;
(3)请在图4中证明,4,型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是,4,型三角形?请找出并直接写出它们的名称.
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(Ⅰ)如图①,当点落在边上时,求点的坐标;
(Ⅱ)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
(Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
如图,矩形 中, , ,双曲线 的图象分别交 , 于点 , ,连接 , , , ,则 值为
A. B.1C. D.
试题篮
()