如图所示,在矩形纸片 中, , ,点 、 分别是矩形的边 、 上的动点,将该纸片沿直线 折叠.使点 落在矩形边 上,对应点记为点 ,点 落在 处,连接 、 、 , 与 交于点 .则下列结论成立的是
① ;
②当点 与点 重合时, ;
③ 的面积 的取值范围是 ;
④当 时, .
A. |
①③ |
B. |
③④ |
C. |
②③ |
D. |
②④ |
如图,在平面直角坐标系中, 为原点,四边形 是矩形,点 , 的坐标分别是 和 ,点 是对角线 上一动点(不与 , 重合),连结 ,作 ,交 轴于点 ,以线段 , 为邻边作矩形 .
(1)填空:点 的坐标为 ;
(2)是否存在这样的点 ,使得 是等腰三角形?若存在,请求出 的长度;若不存在,请说明理由;
(3)①求证: ;
②设 ,矩形 的面积为 ,求 关于 的函数关系式(可利用①的结论),并求出 的最小值.
在 中, , .点 在直线 上,以 , 为边作矩形 ,直线 与直线 , 的交点分别为 , .
(1)如图,点 在线段 上,四边形 是正方形.
①若点 为 的中点,求 的长.
②若 ,求 的长.
(2)已知 ,是否存在点 ,使得 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.
如图,在直角坐标系中,矩形 的顶点 在坐标原点,顶点 , 分别在 轴, 轴上, , 两点坐标分别为 , ,线段 在边 上移动,保持 ,当四边形 的周长最小时,点 的坐标为 .
如图,在矩形 中, , ,将此矩形折叠,使点 与点 重合,点 落在点 处,折痕为 ,则 的长为 , 的长为 .
如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.
如图,在平面直角坐标系中,抛物线 与 轴正半轴交于点 ,且点 的坐标为 ,过点 作垂直于 轴的直线 . 是该抛物线上的任意一点,其横坐标为 ,过点 作 于点 , 是直线 上的一点,其纵坐标为 .以 , 为边作矩形 .
(1)求 的值.
(2)当点 与点 重合时,求 的值.
(3)当矩形 是正方形,且抛物线的顶点在该正方形内部时,求 的值.
(4)当抛物线在矩形 内的部分所对应的函数值 随 的增大而减小时,直接写出 的取值范围.
在矩形 中, ,点 、 分别是边 、 上的动点,且 ,连接 ,将矩形 沿 折叠,点 落在点 处,点 落在点 处.
(1)如图1,当 与线段 交于点 时,求证: ;
(2)如图2,当点 在线段 的延长线上时, 交 于点 ,求证:点 在线段 的垂直平分线上;
(3)当 时,在点 由点 移动到 中点的过程中,计算出点 运动的路线长.
(1)如图1,点为矩形对角线上一点,过点作,分别交、于点、.若,,的面积为,的面积为,则 ;
(2)如图2,点为内一点(点不在上),点、、、分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(3)如图3,点为内一点(点不在上),过点作,,与各边分别相交于点、、、.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(4)如图4,点、、、把四等分.请你在圆内选一点(点不在、上),设、、围成的封闭图形的面积为,、、围成的封闭图形的面积为,的面积为,的面积为,根据你选的点的位置,直接写出一个含有、、、的等式(写出一种情况即可).
已知: 和矩形 如图①摆放(点 与点 重合),点 , , 在同一直线上, , , .如图②, 从图①的位置出发,沿 方向匀速运动,速度为 , 与 交于点 ;同时,点 从点 出发,沿 方向匀速运动,速度为 .过点 作 ,垂足为 ,交 于点 ,连接 , ,当点 停止运动时, 也停止运动.设运动时间为 ,解答下列问题:
(1)当 为何值时, ?
(2)设五边形 的面积为 ,求 与 之间的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由.
(4)在运动过程中,是否存在某一时刻 ,使点 在线段 的垂直平分线上?若存在,求出 的值;若不存在,请说明理由.
在直角坐标系中,过原点 及点 , 作矩形 、连接 ,点 为 的中点,点 是线段 上的动点,连接 ,作 ,交 于点 ,连接 .已知点 从 点出发,以每秒1个单位长度的速度在线段 上移动,设移动时间为 秒.
(1)如图1,当 时,求 的长.
(2)如图2,当点 在线段 上移动的过程中, 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 的值.
(3)连接 ,当 将 分成的两部分的面积之比为 时,求相应的 的值.
问题解决:如图1,在矩形 中,点 , 分别在 , 边上, , 于点 .
(1)求证:四边形 是正方形;
(2)延长 到点 ,使得 ,判断 的形状,并说明理由.
类比迁移:如图2,在菱形 中,点 , 分别在 , 边上, 与 相交于点 , , , , ,求 的长.
如图,在矩形 中,点 是 上的一个动点,连接 ,作点 关于 的对称点 ,且点 落在矩形 的内部,连接 , , ,过点 作 交 于点 ,设 .
(1)求证: ;
(2)当点 落在 上时,用含 的代数式表示 的值;
(3)若 ,且以点 , , 为顶点的三角形是直角三角形,求 的值.
试题篮
()