优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆周角定理 / 解答题
初中数学

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D ,过点 D O 的切线交 AC 于点 E

(1)求证: DE AC

(2)若 O 的半径为5, BC = 16 ,求 DE 的长.

来源:2020年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 C 在以 AB 为直径的 O 上,点 D 是半圆 AB 的中点,连接 AC BC AD BD .过点 D DH / / AB CB 的延长线于点 H

(1)求证:直线 DH O 的切线;

(2)若 AB = 10 BC = 6 ,求 AD BH 的长.

来源:2020年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, C D O 上两点,且在直径 AB 两侧,连结 CD AB 于点 E G AC ̂ 上一点, ADC = G

(1)求证: 1 = 2

(2)点 C 关于 DG 的对称点为 F ,连结 CF .当点 F 落在直径 AB 上时, CF = 10 tan 1 = 2 5 ,求 O 的半径.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,将 ΔABC 沿直线 AB 翻折得到 ΔABD ,连接 CD AB 于点 M E 是线段 CM 上的点,连接 BE F ΔBDE 的外接圆与 AD 的另一个交点,连接 EF BF

(1)求证: ΔBEF 是直角三角形;

(2)求证: ΔBEF ΔBCA

(3)当 AB = 6 BC = m 时,在线段 CM 上存在点 E ,使得 EF AB 互相平分,求 m 的值.

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AB O 的直径, AB = 10 AC = 6 ,连结 OC ,弦 AD 分别交 OC BC 于点 E F ,其中点 E AD 的中点.

(1)求证: CAD = CBA

(2)求 OE 的长.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1, E ΔABC A 的遥望角,若 A = α ,请用含 α 的代数式表示 E

(2)如图2,四边形 ABCD 内接于 O AD ̂ = BD ̂ ,四边形 ABCD 的外角平分线 DF O 于点 F ,连结 BF 并延长交 CD 的延长线于点 E .求证: BEC ΔABC BAC 的遥望角.

(3)如图3,在(2)的条件下,连结 AE AF ,若 AC O 的直径.

①求 AED 的度数;

②若 AB = 8 CD = 5 ,求 ΔDEF 的面积.

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC O 的内接三角形, AD O 的直径,连结 BD BC 平分 ABD

(1)求证: CAD = ABC

(2)若 AD = 6 ,求 CD ̂ 的长.

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

O 中,弦 CD 与直径 AB 相交于点 P ABC = 63 °

(Ⅰ)如图①,若 APC = 100 ° ,求 BAD CDB 的大小;

(Ⅱ)如图②,若 CD AB ,过点 D O 的切线,与 AB 的延长线相交于点 E ,求 E 的大小.

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是平行四边形,以点 O 为圆心, OC 为半径的 O AB 相切于点 B ,与 AO 相交于点 D AO 的延长线交 O 于点 E ,连接 EB OC 于点 F .求 C E 的度数.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图1,在 Rt Δ ABC 中, ACB = 90 ° AC > BC ACB 的平分线交 AB 于点 D .过点 D 分别作 DE AC DF BC .垂足分别为 E F ,则图1中与线段 CE 相等的线段是        

问题探究

(2)如图2, AB 是半圆 O 的直径, AB = 8 P AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP BP APB 的平分线交 AB 于点 C ,过点 C 分别作 CE AP CF BP ,垂足分别为 E F ,求线段 CF 的长.

问题解决

(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 O 的直径 AB = 70 m ,点 C O 上,且 CA = CB P AB 上一点,连接 CP 并延长,交 O 于点 D .连接 AD BD .过点 P 分别作 PE AD PF BD ,垂足分别为 E F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 )

①求 y x 之间的函数关系式;

②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆周角定理解答题