如图,在中,直径垂直于不过圆心的弦,垂足为点,连接,点在上,且
(1)求证:;
(2)过点作的切线交的延长线于点,试判断与是否相等,并说明理由;
(3)设半径为4,点为中点,点在上,求线段的最小值.
如图, 是 的直径,点 是弦 上一动点(不与 , 重合),过点 作 ,垂足为 ,射线 交 于点 ,交过点 的切线于点 .
(1)求证: ;
(2)若 ,当 是 的中点时,判断以 , , , 为顶点的四边形是什么特殊四边形?说明理由.
(年新疆乌鲁木齐市)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的长.
如图, AB是⊙ O的直径,弦 CD与 AB交于点 E,过点 B的切线 BP与 CD的延长线交于点 P,连接 OC, CB.
(1)求证: AE• EB= CE• ED;
(2)若⊙ O的半径为3, OE=2 BE, ,求tan∠ OBC的值及 DP的长.
如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.
(1)求证:△ADE是等腰三角形;
(2)若AD=2,求BE的长.
如图, 是 的弦, 切 于点 , ,垂足为 , 是 的半径,且 .
(1)求证: 平分 ;
(2)若点 是优弧 上一点,且 ,求扇形 的面积.(计算结果保留
(年青海省中考)如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.
(1)求证:AM=AC;
(2)若AC=3,求MC的长.
(年贵州省铜仁市)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
(年江西省南昌市)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).
(1)如图1,AC=BC;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.
如图, 与 的直角边 和斜边 分别相切于点 、 ,与边 相交于点 , 与 相交于点 ,连接 并延长交 边于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图, 为等腰三角形, 是底边 的中点,腰 与 相切于点 , 与 相交于点 .
(1)求证: 是 的切线;
(2)若 , .求阴影部分的面积.
如图, PA为⊙ O的切线, A为切点,直线 PO交⊙ O于点 M、 N,过点 A作 PO的垂线 AB,垂足为 C,交⊙ O于点 B,延长 BO与⊙ O交于点 D,连接 AD、 BM.
(1)等式 OD 2= OC• OP成立吗?若成立,请加以证明;若不成立,请说明理由.
(2)若 AD=6,tan∠ M= ,求sin∠ D的值.
如图, 为半圆 的直径, 为 延长线上一点, 切半圆 于点 ,连接 .作 于点 ,交半圆 于点 .已知 , .
(1)求证: .
(2)求半圆 的半径 的长.
在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 ;③ 型尺 所在的直线垂直平分线段 .
(1)在图1中,请你画出用 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 , 之间的距离,就可求出环形花坛的面积.”如果测得 ,请你求出这个环形花坛的面积.
试题篮
()