优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 切线的判定 / 解答题
初中数学

如图,已知的直径,上的点,点的延长线上,

(1)求证:的切线;

(2)若,求图中阴影部分的面积.

来源:2018年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在中,的中点,相切于点于点

(1)求证:的切线;

(2)若,点上一个动点(不与两点重合),求的度数.

来源:2017年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC O 的弦, AD CD ,且 BAC = CAD

(1)求证: CD O 的切线;

(2)若 AD = 1 CD = 2 ,求 O 的半径.

来源:2016年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的内接三角形,的角平分线交于点,过点的延长线于点

(1)求证:的切线;

(2)若,求的大小.

来源:2017年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图1,的直径是弦上一动点(与点不重合),,过点于点

(1)如图2,当时,求的长;

(2)如图3,当时,延长至点,使,连接

①求证:的切线;

②求的长.

来源:2017年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点中点,分别延长到点到点,使.以点为圆心,分别以为半径在上方作两个半圆.点为小半圆上任一点(不与点重合),连接并延长交大半圆于点,连接

(1)①求证:

②写出三者间的数量关系,并说明理由.

(2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留

来源:2020年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,点的直径的延长线上,点上,且,∠

(1)求证:的切线;
(2)若的半径为2,求图中阴影部分的面积.

  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.

  • 题型:未知
  • 难度:未知

(年贵州省毕节)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.

(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.

  • 题型:未知
  • 难度:未知

(年云南省昆明市)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.

(1)求证:直线FG是⊙O的切线;
(2)若CD=10,EB=5,求⊙O的直径.

  • 题型:未知
  • 难度:未知

(年青海省西宁市)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.

(1)求证:AD是⊙O的切线;
(2)若sin∠ABM=,AM=6,求⊙O的半径.

  • 题型:未知
  • 难度:未知

(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D
以AB上一点O为圆心作⊙O,使⊙O经过点A和点D。
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°,
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧所围成的阴影部分的面积(结果保留根号和)。

  • 题型:未知
  • 难度:未知

(年 呼 和 浩 特 市)如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P,求证:

  • 题型:未知
  • 难度:未知

(贵州省安顺市)(本题12分)
如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求的值.

  • 题型:未知
  • 难度:未知

(内蒙古 呼 和 浩 特 )如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P,求证:

  • 题型:未知
  • 难度:未知

初中数学切线的判定解答题