优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题 / 解答题
初中数学

如图,已知 AO Rt Δ ABC 的角平分线, ACB = 90 ° AC BC = 4 3 ,以 O 为圆心, OC 为半径的圆分别交 AO BC 于点 D E ,连接 ED 并延长交 AC 于点 F

(1)求证: AB O 的切线;

(2)求 tan CAO 的值;

(3)求 AD CF 的值.

来源:2017年广西柳州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为 H ,连接 AC ,过 BD ̂ 上一点 E EG / / AC CD 的延长线于点 G ,连接 AE CD 于点 F ,且 EG = FG ,连接 CE

(1)求证: ΔECF ΔGCE

(2)求证: EG O 的切线;

(3)延长 AB GE 的延长线于点 M ,若 tan G = 3 4 AH = 3 3 ,求 EM 的值.

来源:2017年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径,点 P AB 延长线上的一点,过点 P O 的切线,切点为 C ,连接 AC BC

(1)求证: BAC = BCP

(2)若点 P AB 的延长线上运动, CPA 的平分线交 AC 于点 D ,你认为 CDP 的大小是否发生变化?若变化,请说明理由;若没有变化,求出 CDP 的大小.

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O ΔABC 的边 AB 上一点,以 OB 为半径的 O 与边 AC 相切于点 E ,与边 BC AB 分别相交于点 D F ,且 DE = EF

(1)求证: C = 90 °

(2)当 BC = 3 sin A = 3 5 时,求 AF 的长.

来源:2018年甘肃省金昌市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔAOB 中, AOB 为直角, OA = 6 OB = 8 ,半径为2的动圆圆心 Q 从点 O 出发,沿着 OA 方向以1个单位长度 / 秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以1个单位长度 / 秒的速度匀速运动,设运动时间为 t ( 0 < t 5 ) P 为圆心, PA 长为半径的 P AB OA 的另一个交点分别为 C D ,连接 CD QC

(1)当 t 为何值时,点 Q 与点 D 重合?

(2)当 Q 经过点 A 时,求 P OB 截得的弦长.

(3)若 P 与线段 QC 只有一个公共点,求 t 的取值范围.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 内接于 O A BDC ̂ 的中点, AE AC A ,与 O CB 的延长线交于点 F E ,且 BF ̂ = AD ̂

(1)求证: ΔADC ΔEBA

(2)如果 AB = 8 CD = 5 ,求 tan CAD 的值.

来源:2016年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 O 的半径为 6 cm ,射线 PM 经过点 O OP = 10 cm ,射线 PN O 相切于点 Q A B 两点同时从点 P 出发,点 A 5 cm / s 的速度沿射线 PM 方向运动,点 B 4 cm / s 的速度沿射线 PN 方向运动,设运动时间为 ts

(1)求 PQ 的长;

(2)当直线 AB O 相切时,求证: AB PN

(3)当 t 为何值时,直线 AB O 相切?

来源:2016年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 CB 为半径作 C ,交 AC 于点 D ,交 AC 的延长线于点 E ,连接 BD BE

(1)求证: ΔABD ΔAEB

(2)当 AB BC = 4 3 时,求 tan E

(3)在(2)的条件下,作 BAC 的平分线,与 BE 交于点 F ,若 AF = 2 ,求 C 的半径.

来源:2016年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DH AC 于点 H

(1)判断 DH O 的位置关系,并说明理由;

(2)求证: H CE 的中点;

(3)若 BC = 10 cos C = 5 5 ,求 AE 的长.

来源:2016年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点CAC的垂线交AD的延长线于点E,点FCE的中点,连接DBDCDF

(1)求 CDE 的度数;

(2)求证:DF是⊙O的切线;

(3)若 AC 2 5 DE ,求 tan ABD 的值.

来源:2016年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

数学活动﹣旋转变换

(1)如图①,在△ABC中, ABC 130 ° ,将△ABC绕点C逆时针旋转50°得到△ABC,连接BB′,求∠ABB的大小;

(2)如图②,在△ABC中, ABC 150 ° AB 3 BC 5 ,将△ABC绕点C逆时针旋转60°得到△ABC,连接BB′,以A′为圆心,AB′长为半径作圆.

(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;

(Ⅱ)连接AB,求线段AB的长度;

(3)如图③,在△ABC中, ABC α 90 ° α 180 ° AB m BC n ,将△ABC绕点C逆时针旋转2β角度 0 ° 2 β 180 ° 得到△ABC,连接ABBB′,以A′为圆心,AB′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段AB的长度(结果用角α或角β的三角函数及字母mn所组成的式子表示)

来源:2016年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在Rt△ABC与Rt△OCD中, ACB DCO 90 ° OAB的中点.

(1)求证: B ACD

(2)已知点EAB上,且 B C 2 AB BE

i)若 tan ACD = 3 4 BC 10 ,求CE的长;

ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.

来源:2016年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,△ABC三个顶点坐标为 A ( - 3 , 0 ) B ( 3 , 0 )

(1)求△ABC内切圆⊙D的半径.

(2)过点 E 0 ,﹣ 1 的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.

(3)以(2)为条件,P为直线EF上一点,以P为圆心,以 2 7 为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.

来源:2016年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在Rt△ ABC中,∠ C=90°,以 BC为直径的⊙ O交斜边 AB于点 M,若 HAC的中点,连接 MH

(1)求证: MH为⊙ O的切线.

(2)若 MH = 3 2 , tan ABC = 3 4 ,求⊙ O的半径.

(3)在(2)的条件下分别过点 AB作⊙ O的切线,两切线交于点 DAD与⊙ O相切于 N点,过 N点作 NQBC,垂足为 E,且交⊙ OQ点,求线段 NQ的长度.

来源:2016年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在△ ABC中, ABAC,⊙ O是△ ABC的外接圆,过点 C作∠ BCD=∠ ACB交⊙ O于点 D,连接 ADBC于点 E,延长 DC至点 F,使 CFAC,连接 AF

(1)求证: EDEC

(2)求证: AF是⊙ O的切线;

(3)如图2,若点 G是△ ACD的内心, BCBE=25,求 BG的长.

来源:2019年广东省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题解答题