已知:在矩形中,,分别是边,上的点,过点作的垂线交于点,以为直径作半圆.
(1)填空:点 (填“在”或“不在” 上;当时,的值是 ;
(2)如图1,在中,当时,求证:;
(3)如图2,当的顶点是边的中点时,求证:;
(4)如图3,点在线段的延长线上,若,连接交于点,连接,当时,,,求的值.
已知内接于,的平分线交于点,连接,.
(1)如图①,当时,请直接写出线段,,之间满足的等量关系式: ;
(2)如图②,当时,试探究线段,,之间满足的等量关系,并证明你的结论;
(3)如图③,若,,求的值.
如图,在中,是斜边的中点,以为直径作圆交于点,延长至,使,连接、,交圆于点.
(1)判断四边形的形状,并说明理由;
(2)求证:;
(3)若,,求的长.
如图,内接于,,是的直径,与相交于点,过点作,分别交、的延长线于点、,连接.
(1)求证:是的切线;
(2)求证:.
如图1,已知外一点向作切线,点为切点,连接并延长交于点,连接并延长交于点,过点作,分别交于点,交于点,连接.
(1)求证:;
(2)如图2,当时
①求的度数;
②连接,在上是否存在点使得四边形是菱形.若存在,请直接写出的值;若不存在,请说明理由.
如图,在中,,的平分线交于点,点在上,以为直径的经过点.
(1)求证:①是的切线;
②;
(2)若点是劣弧的中点,且,试求阴影部分的面积.
(1)方法选择
如图①,四边形是的内接四边形,连接,,.求证:.
小颖认为可用截长法证明:在上截取,连接
小军认为可用补短法证明:延长至点,使得
请你选择一种方法证明.
(2)类比探究
[探究1]
如图②,四边形是的内接四边形,连接,,是的直径,.试用等式表示线段,,之间的数量关系,并证明你的结论.
[探究2]
如图③,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
(3)拓展猜想
如图④,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是 .
如图,已知是的直径,,为圆上一点,且,连接,,,与交于点.
(1)求证:为的切线;
(2)若,求的值.
如图,是的直径,点是延长线上一点,过点作的切线,切点是,过点作弦于,连接,.
(1)求证:是的切线;
(2)若,,求的长;
(3)试探究线段,,之间的数量关系,并说明理由.
如图,是的直径,点为上一点,于点,交于点,点为的延长线上一点,的延长线与的延长线交于点,且,连结、、.
(1)求证:为的切线;
(2)过作于点,求证:;
(3)如果,,求的长.
如图,在菱形中,连结、交于点,过点作于点,以点为圆心,为半径的半圆交于点.
①求证:是的切线.
②若且,求图中阴影部分的面积.
③在②的条件下,是线段上的一动点,当为何值时,的值最小,并求出最小值.
已知在平面直角坐标系中,直线分别交轴和轴于点,.
(1)如图1,已知经过点,且与直线相切于点,求的直径长;
(2)如图2,已知直线分别交轴和轴于点和点,点是直线上的一个动点,以为圆心,为半径画圆.
①当点与点重合时,求证:直线与相切;
②设与直线相交于,两点,连结,.问:是否存在这样的点,使得是等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.
如图,已知锐角三角形内接于圆,于点,连接.
(1)若,
①求证:.
②当时,求面积的最大值.
(2)点在线段上,,连接,设,,是正数),若,求证:.
试题篮
()