优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题 / 解答题
初中数学

我们知道,顶点坐标为 ( h , k ) 的抛物线的解析式为 y = a ( x - h ) 2 + k ( a 0 ) .今后我们还会学到,圆心坐标为 ( a , b ) ,半径为 r 的圆的方程 ( x - a ) 2 + ( y - b ) 2 = r 2 ,如:圆心为 P ( - 2 , 1 ) ,半径为3的圆的方程为 ( x + 2 ) 2 + ( y - 1 ) 2 = 9

(1)以 M ( - 3 , - 1 ) 为圆心, 3 为半径的圆的方程为    

(2)如图,以 B ( - 3 , 0 ) 为圆心的圆与 y 轴相切于原点, C B 上一点,连接 OC ,作 BD OC ,垂足为 D ,延长 BD y 轴于点 E ,已知 sin AOC = 3 5

①连接 EC ,证明: EC B 的切线;

②在 BE 上是否存在一点 Q ,使 QB = QC = QE = QO ?若存在,求点 Q 的坐标,并写出以 Q 为圆心,以 QB 为半径的 Q 的方程;若不存在,请说明理由.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在△ABC中,ABAC,点DBC上,BDDC,过点DDEAC,垂足为E,⊙O经过ABD三点.

(1)求证:AB是⊙O的直径;

(2)判断DE与⊙O的位置关系,并加以证明;

(3)若⊙O的半径为3,∠BAC=60°,求DE的长.

来源:2016年甘肃省临夏州中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径,点 P AB 延长线上的一点,过点 P O 的切线,切点为 C ,连接 AC BC

(1)求证: BAC = BCP

(2)若点 P AB 的延长线上运动, CPA 的平分线交 AC 于点 D ,你认为 CDP 的大小是否发生变化?若变化,请说明理由;若没有变化,求出 CDP 的大小.

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:

如图,点在以(南北方向)为直径的上,于点,垂足为,弦分别交于点,且

(1)比较 CQ ̂ DQ ̂ 的大小;

(2)若,求证:

(3)设直线相交所成的锐角为,试确定时,点的位置.

来源:2016年福建省泉州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BC O 的直径, AD O 的弦, AD BC 于点 E ,连接 AB CD ,过点 E EF AB ,垂足为 F AEF = D

(1)求证: AD BC

(2)点 G BC 的延长线上,连接 AG DAG = 2 D

①求证: AG O 相切;

②当 AF BF = 2 5 CE = 4 时,直接写出 CG 的长.

来源:2020年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足PE2PAPC,连接CEAEOEOECA于点D

(1)求证:△PAE∽△PEC

(2)求证:PE为⊙O的切线;

(3)若∠B=30°, AP = 1 2 AC ,求证:DODP

来源:2016年广西柳州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔAOB 中, AOB 为直角, OA = 6 OB = 8 ,半径为2的动圆圆心 Q 从点 O 出发,沿着 OA 方向以1个单位长度 / 秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以1个单位长度 / 秒的速度匀速运动,设运动时间为 t ( 0 < t 5 ) P 为圆心, PA 长为半径的 P AB OA 的另一个交点分别为 C D ,连接 CD QC

(1)当 t 为何值时,点 Q 与点 D 重合?

(2)当 Q 经过点 A 时,求 P OB 截得的弦长.

(3)若 P 与线段 QC 只有一个公共点,求 t 的取值范围.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点DDEAB交圆O于点E

(1)证明点C在圆O上;

(2)求tan∠CDE的值;

(3)求圆心O到弦ED的距离.

来源:2016年广西桂林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 D AB 上,以 AD 为直径的 O 与边 BC 相切于点 E ,与边 AC 相交于点 G ,且 AG ̂ = EG ̂ ,连接 GO 并延长交 O 于点 F ,连接 BF

(1)求证:

AO = AG

BF O 的切线.

(2)若 BD = 6 ,求图形中阴影部分的面积.

来源:2019年辽宁省丹东市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O 为等边 ΔABC 的外接圆,半径为2,点 D 在劣弧 AB ̂ 上运动(不与点 A B 重合),连接 DA DB DC

(1)求证: DC ADB 的平分线;

(2)四边形 ADBC 的面积 S 是线段 DC 的长 x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;

(3)若点 M N 分别在线段 CA CB 上运动(不含端点),经过探究发现,点 D 运动到每一个确定的位置, ΔDMN 的周长有最小值 t ,随着点 D 的运动, t 的值会发生变化,求所有 t 值中的最大值.

来源:2020年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在中,以为直径的于点,连接,且,连接并延长交的延长线于点相切于点

(1)求证:的切线;

(2)连接于点,求证:

(3)若,求的值.

来源:2020年广西南宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中,点 P AB ̂ 的中点,弦 AD PC 互相垂直,垂足为 M BC 分别与 AD PD 相交于点 E N ,连接 BD MN

(1)求证: N BE 的中点.

(2)若 O 的半径为8, AB ̂ 的度数为 90 ° ,求线段 MN 的长.

来源:2020年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知⊙ O的半径为2, AB为直径, CD为弦. ABCD交于点 M,将 CD ̂ 沿 CD翻折后,点 A与圆心 O重合,延长 OAP,使 APOA,连接 PC

(1)求 CD的长;

(2)求证: PC是⊙ O的切线;

(3)点 G ADB ̂ 的中点,在 PC延长线上有一动点 Q,连接 QGAB于点 E.交 BC ̂ 于点 FFBC不重合).问 GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

来源:2016年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 P 为正方形 ABCD 的对角线 AC 上的一点,连接 BP 并延长交 CD 于点 E ,交 AD 的延长线于点 F O ΔDEF 的外接圆,连接 DP

(1)求证: DP O 的切线;

(2)若 tan PDC = 1 2 ,正方形 ABCD 的边长为4,求 O 的半径和线段 OP 的长.

来源:2019年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 CB 为半径作 C ,交 AC 于点 D ,交 AC 的延长线于点 E ,连接 BD BE

(1)求证: ΔABD ΔAEB

(2)当 AB BC = 4 3 时,求 tan E

(3)在(2)的条件下,作 BAC 的平分线,与 BE 交于点 F ,若 AF = 2 ,求 C 的半径.

来源:2016年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题解答题