优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题 / 解答题
初中数学

如图,△ ABC内接于⊙ OBC=2, ABAC,点 D AC 上的动点,且cos∠ ABC 10 10

(1)求 AB的长度;

(2)在点 D的运动过程中,弦 AD的延长线交 BC延长线于点 E,问 ADAE的值是否变化?若不变,请求出 ADAE的值;若变化,请说明理由;

(3)在点 D的运动过程中,过 A点作 AHBD,求证: BHCD+ DH

来源:2018年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,所对弦上一动点,过点于点,连接,过点于点.已知,设两点间的距离为两点间的距离为.(当点与点或点重合时,的值为

小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.

下面是小东的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了的几组值,如下表:

0

1

2

3

4

5

6

0

2.0

2.3

2.1

  

0.9

0

(说明:补全表格时相关数值保留一位小数)

(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.

(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为  

来源:2017年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,点延长线上一点,过点的切线,切点是,过点作弦,连接

(1)求证:的切线;

(2)若,求的长;

(3)试探究线段之间的数量关系,并说明理由.

来源:2019年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以Rt△ ABC的直角边 AB为直径的⊙ O交斜边 AC于点 D,过点 D作⊙ O的切线与 BC交于点 E,弦 DMAB垂直,垂足为 H

(1)求证: EBC的中点;

(2)若⊙ O的面积为12π,两个三角形△ AHD和△ BMH的外接圆面积之比为3,求△ DEC的内切圆面积 S 1和四边形 OBED的外接圆面积 S 2的比.

来源:2019年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形中,连结交于点,过点于点,以点为圆心,为半径的半圆交于点

①求证:的切线.

②若,求图中阴影部分的面积.

③在②的条件下,是线段上的一动点,当为何值时,的值最小,并求出最小值.

来源:2019年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点在数轴上对应的数为26,以原点为圆心,为半径作优弧,使点右下方,且,在优弧上任取一点,且能过作直线交数轴于点,设在数轴上对应的数为,连接

(1)若优弧上一段的长为,求的度数及的值;

(2)求的最小值,并指出此时直线所在圆的位置关系;

(3)若线段的长为12.5,直接写出这时的值.

来源:2018年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,的直径是弦上一动点(与点不重合),,过点于点

(1)如图2,当时,求的长;

(2)如图3,当时,延长至点,使,连接

①求证:的切线;

②求的长.

来源:2017年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

阅读以下材料,并按要求完成相应的任务:

莱昂哈德欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在中,分别为外接圆和内切圆的半径,分别为其中外心和内心,则

如图1,分别是的外接圆和内切圆,相切分于点,设的半径为的半径为,外心(三角形三边垂直平分线的交点)与内心(三角形三条角平分线的交点)之间的距离,则有

下面是该定理的证明过程(部分)

延长于点,过点的直径,连接

(同弧所对的圆周角相等).

,①

如图2,在图1(隐去的基础上作的直径,连接

的直径,所以

相切于点,所以

(同弧所对的圆周角相等),

任务:(1)观察发现:  (用含的代数式表示);

(2)请判断的数量关系,并说明理由.

(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若的外接圆的半径为,内切圆的半径为,则的外心与内心之间的距离为  

来源:2019年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 P 为正方形 ABCD 的对角线 AC 上的一点,连接 BP 并延长交 CD 于点 E ,交 AD 的延长线于点 F O ΔDEF 的外接圆,连接 DP

(1)求证: DP O 的切线;

(2)若 tan PDC = 1 2 ,正方形 ABCD 的边长为4,求 O 的半径和线段 OP 的长.

来源:2019年辽宁省本溪市中考数学试卷
  • 题型:未知
  • 难度:未知

我们知道,顶点坐标为 ( h , k ) 的抛物线的解析式为 y = a ( x - h ) 2 + k ( a 0 ) .今后我们还会学到,圆心坐标为 ( a , b ) ,半径为 r 的圆的方程 ( x - a ) 2 + ( y - b ) 2 = r 2 ,如:圆心为 P ( - 2 , 1 ) ,半径为3的圆的方程为 ( x + 2 ) 2 + ( y - 1 ) 2 = 9

(1)以 M ( - 3 , - 1 ) 为圆心, 3 为半径的圆的方程为    

(2)如图,以 B ( - 3 , 0 ) 为圆心的圆与 y 轴相切于原点, C B 上一点,连接 OC ,作 BD OC ,垂足为 D ,延长 BD y 轴于点 E ,已知 sin AOC = 3 5

①连接 EC ,证明: EC B 的切线;

②在 BE 上是否存在一点 Q ,使 QB = QC = QE = QO ?若存在,求点 Q 的坐标,并写出以 Q 为圆心,以 QB 为半径的 Q 的方程;若不存在,请说明理由.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 MON = 90 ° OT MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O P Q 三点作圆,交 OT 于点 C ,连接 PC QC .设运动时间为 t ( s ) ,其中 0 < t < 8

(1)求 OP + OQ 的值;

(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.

(3)求四边形 OPCQ 的面积.

来源:2020年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图1,点为矩形对角线上一点,过点,分别交于点.若的面积为的面积为,则   

(2)如图2,点内一点(点不在上),点分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(3)如图3,点内一点(点不在上),过点,与各边分别相交于点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(4)如图4,点四等分.请你在圆内选一点(点不在上),设围成的封闭图形的面积为围成的封闭图形的面积为的面积为的面积为,根据你选的点的位置,直接写出一个含有的等式(写出一种情况即可).

来源:2020年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接

(1)求的度数;

(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;

(3)分别记的面积为,当时,求弦的长度.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,动点 M 在以 O 为圆心, AB 为直径的半圆弧上运动(点 M 不与点 A B AB ̂ 的中点 F 重合),连接 OM .过点 M ME AB 于点 E ,以 BE 为边在半圆同侧作正方形 BCDE ,过点 M O 的切线交射线 DC 于点 N ,连接 BM BN

(1)探究:如图一,当动点 M AF ̂ 上运动时;

①判断 ΔOEM ΔMDN 是否成立?请说明理由;

②设 ME + NC MN = k k 是否为定值?若是,求出该定值,若不是,请说明理由;

③设 MBN = α α 是否为定值?若是,求出该定值,若不是,请说明理由;

(2)拓展:如图二,当动点 M FB ̂ 上运动时;

分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)

来源:2017年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

来源:2019年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题解答题