优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 作图—基本作图 / 解答题
初中数学

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AB > AD

(1)用尺规完成以下基本作图:在 AB上截取 AE,使得 AE= AD;作∠ BCD的平分线交 AB于点 F.(保留作图痕迹,不写作法)

(2)在(1)所作的图形中,连接 DECF于点 P,猜想△ CDP按角分类的类型,并证明你的结论.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,已知直线 l 1 / / l 2 ,直线 l 3 分别与 l 1 l 2 交于点 A B .请用尺规作图法,在线段 AB 上求作一点 P ,使点 P l 1 l 2 的距离相等.(保留作图痕迹,不写作法)

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, DB ABCD 的对角线.

(1)尺规作图(请用 2 B 铅笔):作线段 BD 的垂直平分线 EF ,交 AB DB DC 分别于 E O F ,连接 DE BF (保留作图痕迹,不写作法).

(2)试判断四边形 DEBF 的形状并说明理由.

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 D 是斜边 AB 上一点,且 AC = AD

(1)作 BAC 的平分线,交 BC 于点 E ;(要求尺规作图,不写作法,保留作图痕迹)

(2)在(1)的条件下,连接 DE ,求证: DE AB

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知锐角 ΔABC 中, AC = BC

(1)请在图1中用无刻度的直尺和圆规作图:作 ACB 的平分线 CD ;作 ΔABC 的外接圆 O ;(不写作法,保留作图痕迹)

(2)在(1)的条件下,若 AB = 48 5 O 的半径为5,则 sin B =   .(如需画草图,请使用图 2 )

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, B = 40 ° C = 50 °

(1)通过观察尺规作图的痕迹,可以发现直线 DF 是线段 AB   ,射线 AE DAC   

(2)在(1)所作的图中,求 DAE 的度数.

来源:2021年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BD ABCD 的对角线.

(1)作对角线 BD 的垂直平分线,分别交 AD BC BD 于点 E F O (尺规作图,不写作法,保留作图痕迹);

(2)连接 BE DF ,求证:四边形 BEDF 为菱形.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)如图,已知 ΔABC P 为边 AB 上一点,请用尺规作图的方法在边 AC 上求作一点 E ,使 AE + EP = AC .(保留作图痕迹,不写作法)

(2)在图中,如果 AC = 6 cm AP = 3 cm ,则 ΔAPE 的周长是    cm

来源:2021年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,点 A 的坐标是 ( 0 , - 2 ) ,在 x 轴上任取一点 M ,连接 AM ,分别以点 A 和点 M 为圆心,大于 1 2 AM 的长为半径作弧,两弧相交于 G H 两点,作直线 GH ,过点 M x 轴的垂线 l 交直线 GH 于点 P .根据以上操作,完成下列问题.

探究:

(1)线段 PA PM 的数量关系为    ,其理由为:   

(2)在 x 轴上多次改变点 M 的位置,按上述作图方法得到相应点 P 的坐标,并完成下列表格:

M 的坐标

( - 2 , 0 )

( 0 , 0 )

( 2 , 0 )

( 4 , 0 )

P 的坐标

  

( 0 , - 1 )

( 2 , - 2 )

  

猜想:

(3)请根据上述表格中 P 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线 L ,猜想曲线 L 的形状是   

验证:

(4)设点 P 的坐标是 ( x , y ) ,根据图1中线段 PA PM 的关系,求出 y 关于 x 的函数解析式.

应用:

(5)如图3,点 B ( - 1 , 3 ) C ( 1 , 3 ) ,点 D 为曲线 L 上任意一点,且 BDC < 30 ° ,求点 D 的纵坐标 y D 的取值范围.

来源:2020年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 P O 的直径 AB 延长线上的一点 ( PB < OB ) ,点 E 是线段 OP 的中点.

(1)尺规作图:在直径 AB 上方的圆上作一点 C ,使得 EC = EP ,连接 EC PC (保留清晰作图痕迹,不要求写作法);并证明 PC O 的切线;

(2)在(1)的条件下,若 BP = 4 EB = 1 ,求 PC 的长.

来源:2020年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读与思考

如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.

× × × 日星期日

没有直角尺也能作出直角

今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 AB ,现根据木板的情况,要过 AB 上的一点 C ,作出 AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

办法一:如图①,可利用一把有刻度的直尺在 AB 上量出 CD = 30 cm ,然后分别以 D C 为圆心,以 50 cm 40 cm 为半径画圆弧,两弧相交于点 E ,作直线 CE ,则 DCE 必为 90 °

办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 M N 两点,然后把木棒斜放在木板上,使点 M 与点 C 重合,用铅笔在木板上将点 N 对应的位置标记为点 Q ,保持点 N 不动,将木棒绕点 N 旋转,使点 M 落在 AB 上,在木板上将点 M 对应的位置标记为点 R .然后将 RQ 延长,在延长线上截取线段 QS = MN ,得到点 S ,作直线 SC ,则 RCS = 90 °

我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

任务:

(1)填空:“办法一”依据的一个数学定理是     

(2)根据“办法二”的操作过程,证明 RCS = 90 °

(3)①尺规作图:请在图③的木板上,过点 C 作出 AB 的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC AC > AB C = 45 ° .请用尺规作图法,在 AC 边上求作一点 P ,使 PBC = 45 ° .(保留作图痕迹,不写作法,答案不唯一)

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 BD 是矩形 ABCD 的对角线.

(1)用直尺和圆规作线段 BD 的垂直平分线,分别交 AD BC E F (保留作图痕迹,不写作法和证明).

(2)连接 BE DF ,问四边形 BEDF 是什么四边形?请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 中, A = 90 °

(1)请在图1中作出 BC 边上的中线(保留作图痕迹,不写作法);

(2)如图2,设 BC 边上的中线为 AD ,求证: BC = 2 AD

来源:2018年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学作图—基本作图解答题