如图,在矩形 中,连接对角线 、 ,将 沿 方向平移,使点 移到点 ,得到 .
(1)求证: ;
(2)请探究 的形状,并说明理由.
如图,在正方形网格(每个小正方形的边长都是 中,若将 沿 的方向平移 长,得 、 的对应点分别为 、 ,则 长为
A.1B.2C. D.3
如图,菱形 的对角线 , 交于点 , , ,将 沿点 到点 的方向平移,得到△ .当点 与点 重合时,点 与点 之间的距离为
A.6B.8C.10D.12
如图,在 中, .将 沿着 方向平移得到 ,其中点 在边 上, 与 相交于点 .
(1)求证: 为等腰三角形;
(2)连接 、 、 ,当点 在什么位置时,四边形 为矩形,并说明理由.
边长为6的等边 中,点 、 分别在 、 边上, , .
(1)如图1,将 沿射线 方向平移,得到△ ,边 与 的交点为 ,边 与 的角平分线交于点 ,当 多大时,四边形 为菱形?并说明理由.
(2)如图2,将 绕点 旋转 ,得到△ ,连接 、 .边 的中点为 .
①在旋转过程中, 和 有怎样的数量关系?并说明理由;
②连接 ,当 最大时,求 的值.(结果保留根号)
如图,把 沿着 的方向平移到 的位置,它们重叠部分的面积是 面积的一半,若 ,则 移动的距离是
A. B. C. D.
如图,在菱形 中, ,它的一个顶点 在反比例函数 的图象上,若将菱形向下平移2个单位,点 恰好落在函数图象上,则反比例函数解析式为
A. B. C. D.
对于平面图形上的任意两点 , ,如果经过某种变换得到新图形上的对应点 , ,保持 ,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是
A.平移B.旋转C.轴对称D.位似
在 中, , ,点 、 ,点 在第一象限内,双曲线 经过点 .将 沿 轴向上平移 个单位长度,使点 恰好落在双曲线上,则 的值为
A.2B. C.3D.
如图,在 中, , , .线段 由线段 绕点 按逆时针方向旋转 得到, 由 沿 方向平移得到,且直线 过点 .
(1)求 的大小;
(2)求 的长.
如图,在 中, , , .线段 由线段 绕点 按逆时针方向旋转 得到, 由 沿 方向平移得到,且直线 过点 .
(1)求 的大小;
(2)求 的长.
如图,将 沿着射线 方向平移至△ ,使点 落在 的外角平分线 上,连接 .
(1)判断四边形 的形状,并说明理由;
(2)在 中, , , ,求 的长.
试题篮
()