在 中, , 交 的延长线于点 .
特例感知:
(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 ,一条直角边与 重合,另一条直角边恰好经过点 .通过观察、测量 与 的长度,得到 .请给予证明.
猜想论证:
(2)当三角尺沿 方向移动到图2所示的位置时,一条直角边仍与 边重合,另一条直角边交 于点 ,过点 作 垂足为 .此时请你通过观察、测量 、 与 的长度,猜想并写出 、 与 之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图2的基础上沿 方向继续移动到图3所示的位置(点 在线段 上,且点 与点 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)
如图,在矩形 中,连接对角线 、 ,将 沿 方向平移,使点 移到点 ,得到 .
(1)求证: ;
(2)请探究 的形状,并说明理由.
如图,在正方形网格(每个小正方形的边长都是 中,若将 沿 的方向平移 长,得 、 的对应点分别为 、 ,则 长为
A.1B.2C. D.3
如图,菱形 的对角线 , 交于点 , , ,将 沿点 到点 的方向平移,得到△ .当点 与点 重合时,点 与点 之间的距离为
A.6B.8C.10D.12
如图,在 中, .将 沿着 方向平移得到 ,其中点 在边 上, 与 相交于点 .
(1)求证: 为等腰三角形;
(2)连接 、 、 ,当点 在什么位置时,四边形 为矩形,并说明理由.
边长为6的等边 中,点 、 分别在 、 边上, , .
(1)如图1,将 沿射线 方向平移,得到△ ,边 与 的交点为 ,边 与 的角平分线交于点 ,当 多大时,四边形 为菱形?并说明理由.
(2)如图2,将 绕点 旋转 ,得到△ ,连接 、 .边 的中点为 .
①在旋转过程中, 和 有怎样的数量关系?并说明理由;
②连接 ,当 最大时,求 的值.(结果保留根号)
小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形 从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有
A.3个B.4个C.5个D.无数个
如图,把 沿着 的方向平移到 的位置,它们重叠部分的面积是 面积的一半,若 ,则 移动的距离是
A. B. C. D.
如图,在菱形 中, ,它的一个顶点 在反比例函数 的图象上,若将菱形向下平移2个单位,点 恰好落在函数图象上,则反比例函数解析式为
A. B. C. D.
已知 的三个顶点为 , , ,将 向右平移 个单位后, 某一边的中点恰好落在反比例函数 的图象上,则 的值为 .
试题篮
()