优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例
初中数学

如图,正方形中,,点是边的中点,连接交于点,点上,点上,且.若,则  

来源:2017年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形, AF 经过点 C ,连接 DE AF 于点 M ,观察发现:点 M DE 的中点.

下面是两位学生有代表性的证明思路:

思路1:不需作辅助线,直接证三角形全等;

思路2:不证三角形全等,连接 BD AF 于点 H

请参考上面的思路,证明点 M DE 的中点(只需用一种方法证明);

(2)如图2,在(1)的前提下,当 ABE = 135 ° 时,延长 AD EF 交于点 N ,求 AM NE 的值;

(3)在(2)的条件下,若 AF AB = k ( k 为大于 2 的常数),直接用含 k 的代数式表示 AM MF 的值.

来源:2017年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P DC 边上一定点,且 CP = BC ,如图所示.

(1)如图①,求证: BA = BP

(2)如图②,点 Q DC 上,且 DQ = CP ,若 G BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;

(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF T BF 的中点, M N 分别为线段 PF AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.

来源:2017年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DF / / BC ABC 的平分线 BE DF 于点 G GH DF ,点 E 恰好为 DH 的中点,若 AE = 3 CD = 2 ,则 GH = (    )

A.1B.2C.3D.4

来源:2020年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 5 AC = 4 ,若进行以下操作,在边 BC 上从左到右依次取点 D 1 D 2 D 3 D 4 ;过点 D 1 AB AC 的平行线分别交 AC AB 于点 E 1 F 1 ;过点 D 2 AB AC 的平行线分别交 AC AB 于点 E 2 F 2 ;过点 D 3 AB AC 的平行线分别交 AC AB 于点 E 3 F 3 ,则 4 ( D 1 E 1 + D 2 E 2 + + D 2019 E 2019 ) + 5 ( D 1 F 1 + D 2 F 2 + + D 2019 F 2019 ) =           

来源:2019年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, l 1 / / l 2 / / l 3 ,直线 a b l 1 l 2 l 3 分别相交于点 A B C 和点 D E F .若 AB = 3 DE = 2 BC = 6 ,则 EF =       

来源:2019年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, D E 分别是 AB AC 的中点,下列说法中不正确的是 (    )

A. DE = 1 2 BC B. AD AB = AE AC

C. ΔADE ΔABC D. S ΔADE : S ΔABC = 1 : 2

来源:2016年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 l 1 / / l 2 / / l 3 ,直线 AC DF l 1 l 2 l 3 所截, AB = 5 BC = 6 EF = 4 ,则 DE 的长为 (    )

A.2B.3C.4D. 10 3

来源:2020年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D BC 边上,连接 AD ,点 G 在线段 AD 上, GE / / BD ,且交 AB 于点 E GF / / AC ,且交 CD 于点 F ,则下列结论一定正确的是 (    )

A. AB AE = AG AD B. DF CF = DG AD C. FG AC = EG BD D. AE BE = CF DF

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD P 为射线 AB 上的一点,以 BP 为边作正方形 BPEF ,使点 F 在线段 CB 的延长线上,连接 EA EC

(1)如图1,若点 P 在线段 AB 的延长线上,求证: EA = EC

(2)如图2,若点 P 在线段 AB 的中点,连接 AC ,判断 ΔACE 的形状,并说明理由;

(3)如图3,若点 P 在线段 AB 上,连接 AC ,当 EP 平分 AEC 时,设 AB = a BP = b ,求 a : b AEC 的度数.

来源:2017年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 12 cm BD = 16 cm ,动点 N 从点 D 出发,沿线段 DB 2 cm / s 的速度向点 B 运动,同时动点 M 从点 B 出发,沿线段 BA 1 cm / s 的速度向点 A 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 t ( s ) ( t > 0 ) ,以点 M 为圆心, MB 长为半径的 M 与射线 BA ,线段 BD 分别交于点 E F ,连接 EN

(1)求 BF 的长(用含有 t 的代数式表示),并求出 t 的取值范围;

(2)当 t 为何值时,线段 EN M 相切?

(3)若 M 与线段 EN 只有一个公共点,求 t 的取值范围.

来源:2017年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB / / CD AD BC 相交于点 O .若 BO OC = 2 3 AD = 10 ,则 AO =   

来源:2017年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D AC 上一点,且 CD AD = 1 2 ,过点 D DE / / BC AB 于点 E ,连接 CE ,过点 D DF / / CE AB 于点 F .若 AB = 15 ,则 EF =   

来源:2016年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB / / CD AD BC 交于点 O ,已知 AB = 4 CD = 3 OD = 2 ,那么线段 OA 的长为  

来源:2016年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,点 F 从点 B 向点 C 运动,点 E 从点 A 沿射线 CA 方向运动,且 BF = AE ,连接 EF AB D

(1)如图1,当 AB = BC 时,求证: AB = 2 AD + BF

(2)如图2,当 AB = 2 3 BC 时,① AD = 6 BF = 15 2 ,则 AB =   

②过点 F FP AB 于点 P ,探究线段 AB AD FP 之间的数量关系,直接写出结论,不需证明.

来源:2016年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例试题