优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例 / 解答题
初中数学

函数的图象关于y轴对称,我们定义函数相互为“影像”函数。
类似地,如果函数的图象关于y轴对称,那么我们定义函数互为“影像”函数。
(1)请写出函数的“影像”函数:   
(2)函数     的“影像”函数是
(3)如果,一条直线与一对“影像”函数的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数的“影像”函数上的对应点的横坐标是1,求点B的坐标。

  • 题型:未知
  • 难度:未知

如图,矩形OABC的顶点A、C分别在x轴和y轴上,点的坐标为(2,3).双曲线的图像经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是边上一点,且ΔFCB∽ΔDBE,求直线FB的解析式

  • 题型:未知
  • 难度:未知

如图,一次函数的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象在第一象限内交于点C,CD⊥x轴于点D,OD=2AO,求反比例函数的表达式.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,与y轴交于点B,已知,点C(-2,m)在直线AB上,反比例函数的图象经过点C.
(1)求一次函数及反比例函数的解析式;
(2)结合图象直接写出:当时,不等式的解集.

  • 题型:未知
  • 难度:未知

已知:如图,反比例函数与一次函数的图象交于A(3,1)、B(m,-3)两点.
(1)求反比例函数与一次函数的解析式.
(2)若点P是直线上一点,且OP=OA,请直接写出点P的坐标.

  • 题型:未知
  • 难度:未知

如图,已知等腰△AOB放置在平面直角坐标系xOy中, OA=OB,点B的坐标为(3,4) .
(1)求直线AB的解析式;
(2)问将等腰△AOB沿x轴正方向平移多少个单位,能使点B落在反比例函数 (x>0)的图象上.

  • 题型:未知
  • 难度:未知

如图,已知直线与坐标轴相交于A、B两点,与双曲线交于点C.A、D两点关于y轴对称若四边形OBCD的面积为6,求k的值.

  • 题型:未知
  • 难度:未知

许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:

旋钮角度(度)
20
50
70
80
90
所用燃气量(升)
 73
 67
 83
 97
115

 
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.

  • 题型:未知
  • 难度:未知

阅读材料:
若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.
证明:∵(2≥0,∴a﹣+b≥0.
∴a+b≥.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+的最小值.
解:y=2x+=4.当且仅当2x=,即x=1时,“=”成立.
当x=1时,函数有最小值,y最小=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

  • 题型:未知
  • 难度:未知

如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?

来源:2014中考名师推荐数学一次函数、反比例函数与几何图形结合
  • 题型:未知
  • 难度:未知

如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.

(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

来源:2014中考名师推荐数学一次函数、反比例函数与几何图形结合
  • 题型:未知
  • 难度:未知

如图,已知反比例函数y1 (k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.

(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?

  • 题型:未知
  • 难度:未知

某乡要在生活垃圾存放区建一个老年活动中心,这样必须把1 200 m3的生活垃圾运走.
(1)假如每天能运x m3,所需时间为y天,写出y与x之间的函数关系式;
(2)若每辆拖拉机一天能运12 m3,则5辆这样的拖拉机要多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?

  • 题型:未知
  • 难度:未知

如图,一次函数y1=kx+b的图象与反比例函数y2的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2.

  • 题型:未知
  • 难度:未知

如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).

(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例解答题