如图,点A,B分别在轴,轴上,点D在第一象限内,DC⊥轴于点C,AO=CD=2,AB=DA=,反比例函数的图象过CD的中点E。
(1)求证:△AOB≌△DCA;
(2)求的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在轴上,试判断点G是否在反比例函数的图象上,并说明理由。(
如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(-2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.
(1)求反比例函数y=的解析式;
(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.
如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴相交于点A(-2,0),与y轴交于点C,与反比例函数在第一象限内的图象交于点B(m,n),连结OB.若S△AOB=6,S△BOC=2.
(1)求一次函数的表达式;
(2)求反比例函数的表达式.
如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.
(1)求一次函数和反比例函数的解析式;
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.
下表中,y是x的一次函数.
x |
2 |
1 |
2 |
|
5 |
y |
6 |
3 |
|
12 |
15 |
(1)求该函数的表达式,并补全表格;
(2)已知该函数图象上一点M(1,-3)也在反比例函数图象上,求这两个函数图象的另一交点N的坐标.
如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)计算线段AB的长.
如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.
(1)求k和b的值;
(2)连接OA,求△AOB的面积.
如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A.
(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.
如图,在平面直角坐标系中,一次函数(a为常数)的图象与y轴相交于点A,与函数的图象相交于点B,.
(1)求点B的坐标及一次函数的解析式;
(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.
如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于一、三象限的A、B两点,与x轴交于点C.已知,,.
(1)求反比例函数和一次函数的解析式;
(2)求△OBC的面积.
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4).
(1)直接写出A、B、D三点的坐标;
(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.
反比例函数在第二象限的图象如图所示.
(1)直接写出m的取值范围;
(2)若一次函数的图象与上述反比例函数图象交于点A,与x轴交于点B,△AOB的面积为,求m的值.
平面直角坐标系中,一次函数和反比例函数的图象都经过点.
(1)求的值和一次函数的表达式;
(2)点B在双曲线上,且位于直线的下方,若点B的横、纵坐标都是整数,直接写出点B的坐标.
如图,已知A(-4,)、B(2,-4)是一次函数的图象和反比例函数的图象的两个交点。
(1)求反比例函数和一次函数的解析式;
(2)求直线AB和轴的交点C的坐标及△AOB的面积;
(3)求方程的解(请直接写出答案);
(4)求不等式的解集(请直接写出答案)。
试题篮
()