优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例 / 解答题
初中数学

如图所示,一次函数y=k1x+b与反比例函数y=(x<0)的图象相交于A,B两点,且与坐标轴的交点为(–6,0),(0,6),点B的横坐标为–4.

(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式k1x+b>的解.

  • 题型:未知
  • 难度:未知

在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.

  • 题型:未知
  • 难度:未知

如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2.

  • 题型:未知
  • 难度:未知

如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.

(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,请证明△EGD∽△DCF,并求出k的值.

  • 题型:未知
  • 难度:未知

完成y=的图象,并根据图象回答问题.
(1)根据图象指出,当y=-2时x的值;
(2)根据图象指出,当-2<x<1时,y的取值范围;
(3)根据图象指出,当-3<y<2时,x的取值范围.

  • 题型:未知
  • 难度:未知

已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.
求:(1)y与x之间的函数关系式;
(2)当x=2时y的值.

  • 题型:未知
  • 难度:未知

如图,是一辆小汽车沿一条高速公路匀速前进的时间t(小时)与速度x(千米/时)关系的图象,根据图象提供的信息回答下列问题:

(1)这条高速公路的全长是多少千米?
(2)写出速度与时间之间的函数关系.
(3)汽车最大速度可以达到多少?
(4)汽车最慢用几个小时可以到达?如果要在3小时以内到达,汽车的速度应不少于多少?

  • 题型:未知
  • 难度:未知

(1)先求解下列两题:

①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;
②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数 (x>0)的图象经过点B,D,求k的值.
(2)解题后,你发现以上两小题有什么共同点?请简单地写出.

  • 题型:未知
  • 难度:未知

如图,一次函数y=kx+b(k≠ 0)与反比例函数(m≠0)的图象有公共点A(1,2),D(a,-1).直线 轴于点N(3,0),与一次函数和反比例 函数的图象分别交于点B,C.

(1) 求一次函数与反比例函数的解析式;
(2) 求△ABC的面积。
(3) 根据图象回答,在什么范围时,一次函数的值大于反比例函数的值。

  • 题型:未知
  • 难度:未知

如图,直线y=k1x+b(k1≠0)与双曲线(k2≠0)相交于A(1,m)、B(-2,-1)两点.求直线和双曲线的解析式.

  • 题型:未知
  • 难度:未知

已知反比例函数y=(k为常数,k≠1)
(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围.

  • 题型:未知
  • 难度:未知

已知反比例函数y=(m为常数)的图象经过点A(-1,6).

(1)求m的值;
(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.

  • 题型:未知
  • 难度:未知

如图,反比例函数y=(k≠0)的图象过等边三角形AOB的顶点A,已知点B(﹣2,0)

(1)求反比例函数的表达式;
(2)若要使点B在上述反比例函数的图象上,需将△ABC向上平移多少个单位长度?

  • 题型:未知
  • 难度:未知

如图,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).

(1)求反比例函数的解析式;
(2)若点P在直线OA上,且满足PA=2OA,直接写出点的坐标(不写求解过程).

  • 题型:未知
  • 难度:未知

制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.

(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例解答题