优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图1,在Rt△ABC中,∠C=90°,AC=9cm,BC=12cm.在Rt△DEF中,∠DFE=90°,EF=6cm,
DF=8cm.E,F两点在BC边上,DE,DF两边分别与AB边交于G,H两点.现固定△ABC不动,△DEF从点F
与点B重合的位置出发,沿BC以1cm/s的速度向点C运动,点P从点F出发,在折线FD—DE上以2cm/s的速
度向点E运动.△DEF与点P同时出发,当点E到达点C时,△DEF和点P同时停止运动.设运动的时间是
t(单位:s),t>0.
(1)当t=2时,PH=    cm ,DG =    cm;
(2)t为多少秒时△PDE为等腰三角形?请说明理由;
(3)t为多少秒时点P与点G重合?写出计算过程;
(4)求tan∠PBF的值(可用含t的代数式表示).

  • 题型:未知
  • 难度:未知

已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

  • 题型:未知
  • 难度:未知

已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.

  • 题型:未知
  • 难度:未知

直角梯形ABCD中,AD∥BC,AB=AD=3,边BC, AB分别在x轴和y轴上,已知点C的坐标分别为(4,0)。动点P从B点出发,以每秒1个单位的速度沿BC方向作匀速直线运动,同时点Q从D点出发,以与P点相同的速度沿DA方向运动,当Q点运动到A点时, P,Q两点同时停止运动。设点P运动时间为t,
(1)求线段CD的长。
(2) 连接PQ交直线AC于点E,当AE : EC="1" : 2时,求t的值,并求出此时△PEC的面积。
(3) 过Q点作垂直于AD的射线交AC于点M,交BC于点N,连接PM,
①是否存在某一时刻,使以M、P、C三点为顶点的三角形是等腰三角形?若存在 ,求出此时t的值;若不存在,请说明理由;
②当t=          时,点P、M、D在同一直线上。(直接写出)



备用图

 

 



  • 题型:未知
  • 难度:未知

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F ,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
⑴ 求证:△BCE≌△DCF;
⑵ OG与BF有什么数量关系?证明你的结论;
⑶ 若GE·GB=4-2,求 正方形ABCD的面积.
 

  • 题型:未知
  • 难度:未知

深化理解(本小题满分9分)
如图,在平面直角坐标系中,点C的坐标为(0,4),A轴上的一个动点,M是线段AC的中点.把线段AM进行以A为旋转中心、向顺时针方向旋转90°的旋转变换得到AB.过B轴的垂线、过点C轴的垂线,两直线交于点D,直线DB轴于一点E.

A点的横坐标为
(1)若=3,则点B的坐标为  ▲  ,若=-3,,则点B的坐标为  ▲  
(2)若>0,△BCD的面积为,则为何值时,
(3)是否存在,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
求证:△ACD∽△BAC;
求DC的长;
设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.

  • 题型:未知
  • 难度:未知

如图,已知⊙O的直径AB垂直于弦CD,垂足为E,F为CD延长线上一点,AF交⊙O于点G.  求证:AC2=AG·AF

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,ABOC,点A的坐标为(0,8),点C的坐标为(10,0),OBOC.点PC点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点PPHOB,垂足为H.

(1)求点B的坐标;
(2)设△HBP的面积为SS≠0),点P的运动时间为t秒,求St之间的函数关系式;当t为何值时,△HBP的面积最大,并求出最大面积;
(3)分别以PH为圆心,PCHB为半径作⊙P和⊙H,当两圆外切时,求此时t的值.

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线=分别与轴,轴相交于两点,点轴的负半轴上的一个动点,以为圆心,3为半径作.
连结,若,试判断轴的位置关系,并说明理由;
为何值时,以与直线=的两个交点和圆心为顶点的三角形是正三角形?

  • 题型:未知
  • 难度:未知

   如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3) 在(2)的条件下,若sinE=,AK=,求FG的长.

  • 题型:未知
  • 难度:未知

  如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.

(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示).

  • 题型:未知
  • 难度:未知

如图①,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.
请直接写出OE、⊙M的半径r、CH的长;
如图②,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
如图③,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
     

  • 题型:未知
  • 难度:未知

如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).
用含有x的代数式表示CF的长
求点F与点B重合时x的值.
当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.
当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.

  • 题型:未知
  • 难度:未知

如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
过A,B两点的直线解析式是      ▲       
当t﹦4时,点P的坐标为   ▲    ;当t ﹦   ▲    ,点P与点E重合;
① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?
② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题