优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.

(1)求AC的长和点D的坐标;
(2)说明△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.

  • 题型:未知
  • 难度:未知

如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.

(1)若∠ABC=60°.求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.

  • 题型:未知
  • 难度:未知

已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.

(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证
(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;
(3)如图③,若BA=BC=2,DA=DC=,∠BAD=90°,DE⊥CF,试求的值.

  • 题型:未知
  • 难度:未知

如图,抛物线与x轴交于A、B两点,与y轴交于点C,点M为抛物线的顶点,且OC=OB.

(1)求抛物线的解析式.
(2)过C、O两点作⊙H交x轴于另一点D,交直线BC于另一点E,已知F(1.5,-1.5)(F与H不重合).求:的值.
(3)若抛物线上有一点P,连PC交线段BM于Q点,且,求P点的坐标.

  • 题型:未知
  • 难度:未知

(本题8分)如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.

(1)△ABC与△FOA相似吗?为什么?
(2)试判定四边形AFCE的形状,并说明理由.

  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2
    
(1)当=1s时,S的值是多少?
(2) 当时,点E、F、G分别在边AB、BC、CD上移动,用含t的代数式表示S;当时,点E在边AB上移动,点F、G都在边CD上移动,用含t的代数式表示S.
(3)若点F在矩形的边BC上移动,当为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由

  • 题型:未知
  • 难度:未知

如图,已知左右并排的两棵树高分别是AB=8m,CD=12m,两树的根部的距离BD=5m,小明眼睛离地面的高度EF为1.6m,他沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?

  • 题型:未知
  • 难度:未知

如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使SPBD=6?若存在,求出点P的坐标;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在直角梯形ABCD中,AD∥CB,  ,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).

(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,四边形ABQP是平行四边形.
(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?

  • 题型:未知
  • 难度:未知

已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:

(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图所示,E是正方形ABCD的边AB上的动点,正方形的边长为4, EF⊥DE交BC于点F.
   
(1)求证:△ADE ∽△BEF ;
(2)AE=x,BF=y.当x取什么值时,y有最大值? 并求出这个最大值;
(3)已知D、C 、F、E四点在同一个圆上,连接CE、DF,若sin∠CEF =,求此圆直径.

  • 题型:未知
  • 难度:未知

如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形AB-CD的边AB上的“强相似点”,解决问题:

(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由:
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0),B(1,0),过顶点C作CH⊥x轴于点H.

(1)a=       ,b=       ,顶点C的坐标为        
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

  • 题型:未知
  • 难度:未知

(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分)
如图,已知在等腰 Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,

(1)求证:△DEK∽△DFB;
(2)求y关于x的函数解析式并写出定义域;
(3)联结CD,当时,求x的值

  • 题型:未知
  • 难度:未知

对于点E和四边形ABCD,给出如下定义:在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,则称E为四边形ABCD边AB上的“相似点”;如果这三个三角形都相似,我们称E为四边形ABCD边AB上的“强相似点”.

如图1,在四边形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上, 点E是AB边上一点,∠DEC=45°,试判断点E是否是四边形ABCD边AB上的相似点,并证明你的结论正确;
(2)如图2,在矩形ABCD中,AB=8,AD=3.
①在AB边上是否存在点E,使点E为四边形ABCD边AB上的“强相似点”.若存在,有几个?试在图2中画出所有强相似点;
②在①所画图形的基础上求AE的长.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题