如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,,.动点从点出发,以的速度沿轴匀速向点运动,到达点即停止.设点运动的时间为.
(1)过点作对角线的垂线,垂足为点.求的长与时间的函数关系式,并写出自变量的取值范围;
(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;
(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由.
如图1,点将线段分成两部分,如果,那么称点为线段的黄金分割点.
某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为的图形分成两部分,这两部分的面积分别为,,如果,那么称直线为该图形的黄金分割线.
(1)研究小组猜想:在中,若点为边上的黄金分割点(如图2),则直线是的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点任作一条直线交于点,再过点作直线,交于点,连接(如图3),则直线也是的黄金分割线.
请你说明理由.
(4)如图4,点是的边的黄金分割点,过点作,交于点,显然直线是的黄金分割线.请你画一条的黄金分割线,使它不经过各边黄金分割点.
在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角.
(1)填空:
①如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为( , );
②如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为 ;
(2)如图3,分别以锐角三角形的三边,,为边向外作正方形,,,点,,分别是这三个正方形的对角线交点,试分别利用与,与之间的关系,运用旋转相似变换的知识说明线段与之间的关系.
如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足.
(1)求点,点的坐标.
(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动.设,.
(1)求点到的距离的长;
(2)求关于的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0)。
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;
(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。
如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
已知:正方形的边长为1,射线与射线交于点,射线与射线交于点,.
(1)如图1,当点在线段上时,试猜想线段、、有怎样的数量关系?并证明你的猜想.
(2)设,,当点在线段上运动时(不包括点、),如图1,求关于的函数解析式,并指出的取值范围.
(3)当点在射线上运动时(不含端点),点在射线上运动.试判断以为圆心以为半径的和以为圆心以为半径的之间的位置关系.
(4)当点在延长线上时,设与交于点,如图2.问△与△能否相似,若能相似,求出的值,若不可能相似,请说明理由.
如图,直线与轴、轴分别相交于点 、.抛物线与轴的正半轴相交于点,与这个一次函数的图像相交于、,且.
(1)求点 、、的坐标;
(2)如果,求抛物线的解析式.
如图,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分别是AC、AB
的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿
BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t
<4)s.解答下列问题:
(1)当t为何值时,PQ⊥AB?
(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为ycm2,求y与t之间的函数关系式;
(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之比为
=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.
如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.
如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式(要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值.
小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=,CE=,CA=(点A、E、C在同一直线上).已知小明的身高EF是,请你帮小明求出楼高AB.
如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC.
(1)当点P运动到线段OA的中点时, 点C的坐标为 ;
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
试题篮
()