如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
(1)求证:四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?
如图,AD是ABC的高,点P,Q在BC边上,点R在AC边上,点S在AB边上,BC=60cm,AD=40cm,AB=AC.四边形PQRS是正方形。
(1)ASR与ABC相似吗?为什么?
(2)求正方形PQRS的边长。
情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 _________ ,∠CAC′= _________ °.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
已知,如图所示,在Rt△ABC中,∠C=90°,有一内接正方形DEFC,连接AF交DE于G,AC=15,BC=10,求EG的长.
(本小题满分8分)(1)阅读理解
已知:如图1,△ABC中,AD是中线,点P在AD上,BP、CP的延长线分别交AC、AB于E、F.求证:EF∥BC.
证明:如图2,EF交AD于G,过P作MN∥BC分别交AB、AC于M、N,
在△ABD中,由PM∥BD,得到,同理,
因为BD=CD,所以PM=PN.
在△FBC中,由PM∥BC,所以同理,
,所以△EPF∽△CPB,所以∠FEP=∠PBC,所以EF∥BC.
(2)逆向思考
在△ABC中,D在BC上,点P在AD上,BP、CP的延长线分别交AC、AB于E、F,如果EF∥BC.那么D是BC中点.请你给出证明.
(3)知识应用
①如图3直线a、b、c、d、e、f、g、h是等距的一组平行线,AB在直线g上,请你用无刻度的直尺利用现有平行线作出线段AB的中点.并作简要的画图说明.
②如图4直线a、b、c、d、e、f、g、h是等距的一组平行线,点P不在这些直线上,点A在直线g上,点B在直线c上,请你用无刻度的直尺利用现有平行线作出过点P的直线PQ平行于AB.并作简要的画图说明.
已知:如图,在Rt△ABC中,∠A=90°,以AB为直径作⊙O,BC交⊙O于点D,E是边AC的中点,ED、AB的延长线相交于点F.
求证:(1)DE为⊙O的切线.
(2)AB•DF=AC•BF.
如图,在□ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD。
(1)求证:AB:CE=AF:BC;
(2)若△DEF的面积为3,求:□ABCD的面积。
如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:
(1)CG=BH;
(2)FC2=BF•GF;
(3)=.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.
(1)求证:=AB·AD;
(2)若AD=4,AB=6,求的值.
如图1,在△ABC中,∠ACB=90°,经过点B的直线l(l不与直线AB重合)与直线BC的夹角的大小等于∠ABC,分别过点C、A作直线l的垂线,垂足分别为点D、E
(1)写出线段AE、CD之间的数量关系,并加以证明;
(2)当△ABC的位置旋转到图2或图3时,设直线CE、AB交于点F,且,CD=4,请你在图2和图3中任选一种情况,求此时BD的长.
在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)结合图2,通过观察、测量、猜想:=______,并证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若AC=8,BD=6,直接写出的值.
(满分10分)如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)试说明:AD⊥DC;
(2)若AD=1,AC=,求AB的长.
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.
试题篮
()