如图,在平面直角坐标系中,抛物线 交 轴于 、 两点,交 轴于点 , , ,直线 过点 ,交 轴于点 ,交抛物线于点 ,且满足 .
(1)求抛物线的解析式;
(2)动点 从点 出发,沿 轴正方向以每秒2个单位长度的速度向点 运动,动点 从点 出发,沿射线 以每秒1个单位长度的速度向点 运动,当点 运动到点 时,点 也停止运动,设运动时间为 秒.
①在 、 的运动过程中,是否存在某一时刻 ,使得 与 相似,若存在,求出 的值;若不存在,请说明理由.
②在 、 的运动过程中,是否存在某一时刻 ,使得 与 的面积之和最大?若存在,求出 的值;若不存在,请说明理由.
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
如图,抛物线 与 轴交于 、 两点,与 轴交于 点,已知 ,且 是抛物线上另一点.
(1)求 、 的值;
(2)连接 ,设点 是 轴上任一点,若以 、 、 三点为顶点的三角形是等腰三角形,求 点的坐标;
(3)若点 是 轴正半轴上且在抛物线内的一动点(不与 、 重合),过点 作 交抛物线的对称轴于 点.设 , 的面积为 ,求 与 之间的函数关系式.
如图, 是 的外接圆, 是 的直径, 于点 .
(1)求证: ;
(2)连接 并延长,交 于点 ,交 于点 ,连接 .若 的半径为5, ,求 和 的长.
如图1,抛物线 与 相交于点 、 , 与 分别交 轴于点 、 ,且 为线段 的中点.
(1)求 的值;
(2)若 ,求 的面积;
(3)抛物线 的对称轴为 ,顶点为 ,在(2)的条件下:
①点 为抛物线 对称轴 上一动点,当 的周长最小时,求点 的坐标;
②如图2,点 在抛物线 上点 与点 之间运动,四边形 的面积是否存在最大值?若存在,求出面积的最大值和点 的坐标;若不存在,请说明理由.
如图,在 中, , 平分 交 于点 ,点 在 上, , 是 的外接圆,交 于点 .
(1)求证: 是 的切线;
(2)若 的半径为5, ,求 .
如图,在矩形 中,对角线相交于点 , 为 的内切圆,切点分别为 , , , , .
(1)求 , ;
(2)点 从点 出发,沿线段 向点 以每秒3个单位长度的速度运动,当点 运动到点 时停止,过点 作 交 于点 ,设运动时间为 秒.
①将 沿 翻折得△ ,是否存在时刻 ,使点 恰好落在边 上?若存在,求 的值;若不存在,请说明理由;
②若点 为线段 上的动点,当 为正三角形时,求 的值.
如图,在四边形 中, , , 分别平分 , ,并交线段 , 于点 , (点 , 不重合).在线段 上取点 , (点 在 之间),使 .当点 从点 匀速运动到点 时,点 恰好从点 匀速运动到点 .记 , ,已知 ,当 为 中点时, .
(1)判断 与 的位置关系,并说明理由.
(2)求 , 的长.
(3)若 .
①当 时,通过计算比较 与 的大小关系.
②连结 ,当 所在直线经过四边形 的一个顶点时,求所有满足条件的 的值.
已知 是 的任意一条直径.
(1)用图1,求证: 是以直径 所在直线为对称轴的轴对称图形;
(2)已知 的面积为 ,直线 与 相切于点 ,过点 作 ,垂足为 ,如图2.
求证:① ;
②改变图2中切点 的位置,使得线段 时, .
如图1,点 是半圆 的直径 上一动点(不包括端点), ,过点 作 交半圆于点 ,连结 ,过点 作 交半圆于点 ,连结 .牛牛想探究在点 运动过程中 与 的大小关系.他根据学习函数的经验,记 , , .请你一起参与探究函数 、 随自变量 变化的规律.
通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.
|
|
0.30 |
0.80 |
1.60 |
2.40 |
3.20 |
4.00 |
4.80 |
5.60 |
|
|
|
2.01 |
2.98 |
3.46 |
3.33 |
2.83 |
2.11 |
1.27 |
0.38 |
|
|
|
5.60 |
4.95 |
3.95 |
2.96 |
2.06 |
1.24 |
0.57 |
0.10 |
|
(1)当 时, .
(2)在图2中画出函数 的图象,并结合图象判断函数值 与 的大小关系.
(3)由(2)知" 取某值时,有 ".如图3,牛牛连结了 ,尝试通过计算 , 的长来验证这一结论,请你完成计算过程.
如图,锐角三角形 内接于 , 的平分线 交 于点 ,交 边于点 ,连接 .
(1)求证: .
(2)已知 , ,求线段 的长(用含 , 的代数式表示).
(3)已知点 在线段 上(不与点 ,点 重合),点 在线段 上(不与点 ,点 重合), ,求证: .
如图1, 为 上一点,点 在直径 的延长线上,且 .
(1)判断直线 与 的位置关系,并说明理由;
(2)若 , ,求 的半径;
(3)如图2,在(2)的条件下, 的平分线 交 于点 ,交 于点 ,连结 .求 的值.
如图, 为 的直径, 为 上一点,连接 , , 为 延长线上一点,连接 ,且 .
(1)求证: 是 的切线;
(2)若 的半径为 , 的面积为 ,求 的长;
(3)在(2)的条件下, 为 上一点,连接 交线段 于点 ,若 ,求 的长.
在 中, , , 是边 上一点,将 沿 折叠得到 ,连接 .
(1)特例发现
如图1,当 , 落在直线 上时.
①求证: ;
②填空: 的值为 ;
(2)类比探究
如图2,当 , 与边 相交时,在 上取一点 ,使 , 交 于点 .探究 的值(用含 的式子表示),并写出探究过程;
(3)拓展运用
在(2)的条件下,当 , 是 的中点时,若 ,求 的长.
试题篮
()