优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图1,直线 y = x + 1 与抛物线 y = 2 x 2 相交于 A B 两点,与 y 轴交于点 M M N 关于 x 轴对称,连接 AN BN

(1)①求 A B 的坐标;②求证: ANM = BNM

(2)如图2,将题中直线 y = x + 1 变为 y = kx + b ( b > 0 ) ,抛物线 y = 2 x 2 变为 y = a x 2 ( a > 0 ) ,其他条件不变,那么 ANM = BNM 是否仍然成立?请说明理由.

来源:2017年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, P AB 延长线上的一点, PC O 于点 C AD PC ,垂足为 D ,弦 CE 平分 ACB ,交 AB 于点 F ,连接 AE

(1)求证: CAB = CAD

(2)求证: PC = PF

(3)若 tan ABC = 3 2 AE = 5 2 ,求线段 PC 的长.

来源:2017年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,动点 M 在以 O 为圆心, AB 为直径的半圆弧上运动(点 M 不与点 A B AB ̂ 的中点 F 重合),连接 OM .过点 M ME AB 于点 E ,以 BE 为边在半圆同侧作正方形 BCDE ,过点 M O 的切线交射线 DC 于点 N ,连接 BM BN

(1)探究:如图一,当动点 M AF ̂ 上运动时;

①判断 ΔOEM ΔMDN 是否成立?请说明理由;

②设 ME + NC MN = k k 是否为定值?若是,求出该定值,若不是,请说明理由;

③设 MBN = α α 是否为定值?若是,求出该定值,若不是,请说明理由;

(2)拓展:如图二,当动点 M FB ̂ 上运动时;

分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)

来源:2017年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 E 为边 AB 上一动点,连接 CE 并将其绕点 C 顺时针旋转 90 ° 得到 CF ,连接 DF ,以 CE CF 为邻边作矩形 CFGE GE AD AC 分别交于点 H M GF CD 延长线于点 N

(1)证明:点 A D F 在同一条直线上;

(2)随着点 E 的移动,线段 DH 是否有最小值?若有,求出最小值;若没有,请说明理由;

(3)连接 EF MN ,当 MN / / EF 时,求 AE 的长.

来源:2017年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直角 ΔABC 中, BAC = 90 ° D BC 上,连接 AD ,作 BF AD 分别交 AD E AC F

(1)如图1,若 BD = BA ,求证: ΔABE ΔDBE

(2)如图2,若 BD = 4 DC ,取 AB 的中点 G ,连接 CG AD M ,求证:① GM = 2 MC ;② A G 2 = AF · AC

来源:2017年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + 4 ax + b ( a > 0 ) x 轴相交于 O A 两点(其中 O 为坐标原点),过点 P ( 2 , 2 a ) 作直线 PM x 轴于点 M ,交抛物线于点 B ,点 B 关于抛物线对称轴的对称点为 C (其中 B C 不重合),连接 AP y 轴于点 N ,连接 BC PC

(1) a = 3 2 时,求抛物线的解析式和 BC 的长;

(2)如图 a > 1 时,若 AP PC ,求 a 的值;

(3)是否存在实数 a ,使 AP PN = 1 2 ?若存在,求出 a 的值,如不存在,请说明理由.

来源:2016年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC y 轴相交于点 E ,矩形 OABC 的边 OC OA 的长是关于 x 的一元二次方程 x 2 12 x + 32 = 0 的两个根, 且 OA > OC

(1) 求线段 OA OC 的长;

(2) 求证: ΔADE ΔCOE ,并求出线段 OE 的长;

(3) 直接写出点 D 的坐标;

(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E C P F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y = m 3 m 2 x ( x > 0 , m > 1 ) 图象上一点,点 A 的横坐标为 m ,点 B ( 0 , m ) y 轴负半轴上的一点,连接 AB AC AB ,交 y 轴于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A AE 平行于 x 轴,过点 D y 轴平行线交 AE 于点 E

(1)当 m = 3 时,求点 A 的坐标;

(2) DE =   ,设点 D 的坐标为 ( x , y ) ,求 y 关于 x 的函数关系式和自变量的取值范围;

(3)连接 BD ,过点 A BD 的平行线,与(2)中的函数图象交于点 F ,当 m 为何值时,以 A B D F 为顶点的四边形是平行四边形?

来源:2018年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + 5 ( k 1 < 0 ) 的图象与坐标轴交于 A B 两点,与反比例函数 y = k 2 x ( k 2 > 0 ) 的图象交于 M N 两点,过点 M MC y 轴于点 C ,已知 CM = 1

(1)求 k 2 k 1 的值;

(2)若 AM AN = 1 4 ,求反比例函数的解析式;

(3)在(2)的条件下,设点 P x 轴(除原点 O 外)上一点,将线段 CP 绕点 P 按顺时针或逆时针旋转 90 ° 得到线段 PQ ,当点 P 滑动时,点 Q 能否在反比例函数的图象上?如果能,求出所有的点 Q 的坐标;如果不能,请说明理由.

来源:2017年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直角 ΔABC 中, A 为直角, AB = 6 AC = 8 .点 P Q R 分别在 AB BC CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点 P 由点 A 出发以每秒3个单位的速度向点 B 运动,点 Q 由点 B 出发以每秒5个单位的速度向点 C 运动,点 R 由点 C 出发以每秒4个单位的速度向点 A 运动,在运动过程中:

(1)求证: ΔAPR ΔBPQ ΔCQR 的面积相等;

(2)求 ΔPQR 面积的最小值;

(3)用 t (秒 ) ( 0 t 2 ) 表示运动时间,是否存在 t ,使 PQR = 90 ° ?若存在,请直接写出 t 的值;若不存在,请说明理由.

来源:2017年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等腰直角三角形, BAC = 90 ° ,将 ΔABC 绕点 C 顺时针方向旋转得到△ A ' B ' C ,记旋转角为 α ,当 90 ° < α < 180 ° 时,作 A ' D AC ,垂足为 D A ' D B ' C 交于点 E

(1)如图1,当 CA ' D = 15 ° 时,作 A ' EC 的平分线 EF BC 于点 F

①写出旋转角 α 的度数;

②求证: EA ' + EC = EF

(2)如图2,在(1)的条件下,设 P 是直线 A ' D 上的一个动点,连接 PA PF ,若 AB = 2 ,求线段 PA + PF 的最小值.(结果保留根号)

来源:2019年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

已知,在 Rt Δ ABC 中, ACB = 90 ° AC = 4 BC = 2 D AC 边上的一个动点,将 ΔABD 沿 BD 所在直线折叠,使点 A 落在点 P 处.

(1)如图1,若点 D AC 中点,连接 PC

①写出 BP BD 的长;

②求证:四边形 BCPD 是平行四边形.

(2)如图2,若 BD = AD ,过点 P PH BC BC 的延长线于点 H ,求 PH 的长.

来源:2017年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以菱形 ABCD 对角线交点为坐标原点,建立平面直角坐标系, A B 两点的坐标分别为 ( 2 5 0 ) ( 0 , 5 ) ,直线 DE DC AC E ,动点 P 从点 A 出发,以每秒2个单位的速度沿着 A D C 的路线向终点 C 匀速运动,设 ΔPDE 的面积为 S ( S 0 ) ,点 P 的运动时间为 t 秒.

(1)求直线 DE 的解析式;

(2)求 S t 之间的函数关系式,并写出自变量 t 的取值范围;

(3)当 t 为何值时, EPD + DCB = 90 ° ?并求出此时直线 BP 与直线 AC 所夹锐角的正切值.

来源:2016年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

问题探究:

1.新知学习

若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).

2.解决问题

已知等边三角形ABC的边长为2.

(1)如图一,若 AD BC ,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;

(2)如图二,若 ME BC ,且ME是△ABC的一条面径,求面径ME的长;

(3)如图三,已知DBC的中点,连接ADMAB上的一点 0 AM 1 EDC上的一点,连接MEMEAD交于点O,且 S MOA S DOE

①求证:ME是△ABC的面径;

②连接AE,求证: MD AE

(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)

来源:2016年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y a x 2 + bx + c a 0 经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点.

(1)求此抛物线的解析式;

(2)若把抛物线 y a x 2 + bx + c a 0 向下平移 13 3 个单位长度,再向右平移 n n 0 个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点Py轴上,且满足 OPA + OCA CBA ,求CP的长.

来源:2016年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题