优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° AC = 12 .点 D 在直线 CB 上,以 CA CD 为边作矩形 ACDE ,直线 AB 与直线 CE DE 的交点分别为 F G

(1)如图,点 D 在线段 CB 上,四边形 ACDE 是正方形.

①若点 G DE 的中点,求 FG 的长.

②若 DG = GF ,求 BC 的长.

(2)已知 BC = 9 ,是否存在点 D ,使得 ΔDFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° O AB 相交于点 C ,与 AO 相交于点 E ,连接 CE ,已知 AOC = 2 ACE

(1)求证: AB O 的切线;

(2)若 AO = 20 BO = 15 ,求 CE 的长.

来源:2021年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系 xOy 中,已知 ΔABC ABC = 90 ° ,顶点 A 在第一象限, B C x 轴的正半轴上 ( C B 的右侧), BC = 2 AB = 2 3 ΔADC ΔABC 关于 AC 所在的直线对称.

(1)当 OB = 2 时,求点 D 的坐标;

(2)若点 A 和点 D 在同一个反比例函数的图象上,求 OB 的长;

(3)如图2,将(2)中的四边形 ABCD 向右平移,记平移后的四边形为 A 1 B 1 C 1 D 1 ,过点 D 1 的反比例函数 y = k x ( k 0 ) 的图象与 BA 的延长线交于点 P .问:在平移过程中,是否存在这样的 k ,使得以点 P A 1 D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的 k 的值;若不存在,请说明理由.

来源:2018年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程 x 2 5 x + 2 = 0 ,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点 A ( 0 , 1 ) B ( 5 , 2 )

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点 A ,另一条直角边恒过点 B

第三步:在移动过程中,当三角板的直角顶点落在 x 轴上点 C 处时,点 C 的横坐标 m 即为该方程的一个实数根(如图 1 )

第四步:调整三角板直角顶点的位置,当它落在 x 轴上另一点 D 处时,点 D 的横坐标 n 即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点 D (请保留作出点 D 时直角三角板两条直角边的痕迹);

(2)结合图1,请证明“第三步”操作得到的 m 就是方程 x 2 5 x + 2 = 0 的一个实数根;

(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程 a x 2 + bx + c = 0 ( a 0 , b 2 4 ac 0 ) 的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当 m 1 n 1 m 2 n 2 a b c 之间满足怎样的关系时,点 P ( m 1 n 1 ) Q ( m 2 n 2 ) 就是符合要求的一对固定点?

来源:2017年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径. BC O 的弦,弦 ED 垂直 AB 于点 F ,交 BC 于点 G .过点 C O 的切线交 ED 的延长线于点 P

(1)求证: PC = PG

(2)判断 P G 2 = PD PE 是否成立?若成立,请证明该结论;

(3)若 G BC 中点, OG = 5 sin B = 5 5 ,求 DE 的长.

来源:2021年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

有两个内角分别是它们对角的一半的四边形叫做半对角四边形.

(1)如图1,在半对角四边形 ABCD 中, B = 1 2 D C = 1 2 A ,求 B C 的度数之和;

(2)如图2,锐角 ΔABC 内接于 O ,若边 AB 上存在一点 D ,使得 BD = BO OBA 的平分线交 OA 于点 E ,连接 DE 并延长交 AC 于点 F AFE = 2 EAF .求证:四边形 DBCF 是半对角四边形;

(3)如图3,在(2)的条件下,过点 D DG OB 于点 H ,交 BC 于点 G ,当 DH = BG 时,求 ΔBGH ΔABC 的面积之比.

来源:2017年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,点 C 是半圆 O 的直径 AB 上一动点(不包括端点), AB = 6 cm ,过点 C CD AB 交半圆于点 D ,连结 AD ,过点 C CE / / AD 交半圆于点 E ,连结 EB .牛牛想探究在点 C 运动过程中 EC EB 的大小关系.他根据学习函数的经验,记 AC = xcm EC = y 1 cm EB = y 2 cm .请你一起参与探究函数 y 1 y 2 随自变量 x 变化的规律.

通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

x

0.30

0.80

1.60

2.40

3.20

4.00

4.80

5.60

y 1

2.01

2.98

3.46

3.33

2.83

2.11

1.27

0.38

y 2

5.60

4.95

3.95

2.96

2.06

1.24

0.57

0.10

(1)当 x = 3 时, y 1 =   

(2)在图2中画出函数 y 2 的图象,并结合图象判断函数值 y 1 y 2 的大小关系.

(3)由(2)知" AC 取某值时,有 EC = EB ".如图3,牛牛连结了 OE ,尝试通过计算 EC EB 的长来验证这一结论,请你完成计算过程.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,锐角三角形 ABC 内接于 O BAC 的平分线 AG O 于点 G ,交 BC 边于点 F ,连接 BG

(1)求证: ΔABG ΔAFC

(2)已知 AB = a AC = AF = b ,求线段 FG 的长(用含 a b 的代数式表示).

(3)已知点 E 在线段 AF 上(不与点 A ,点 F 重合),点 D 在线段 AE 上(不与点 A ,点 E 重合), ABD = CBE ,求证: B G 2 = GE GD

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,连接 AC BC D AB 延长线上一点,连接 CD ,且 BCD = A

(1)求证: CD O 的切线;

(2)若 O 的半径为 5 ΔABC 的面积为 2 5 ,求 CD 的长;

(3)在(2)的条件下, E O 上一点,连接 CE 交线段 OA 于点 F ,若 EF CF = 1 2 ,求 BF 的长.

来源:2021年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° AC BC = m D 是边 BC 上一点,将 ΔABD 沿 AD 折叠得到 ΔAED ,连接 BE

(1)特例发现

如图1,当 m = 1 AE 落在直线 AC 上时.

①求证: DAC = EBC

②填空: CD CE 的值为   

(2)类比探究

如图2,当 m 1 AE 与边 BC 相交时,在 AD 上取一点 G ,使 ACG = BCE CG AE 于点 H .探究 CG CE 的值(用含 m 的式子表示),并写出探究过程;

(3)拓展运用

在(2)的条件下,当 m = 2 2 D BC 的中点时,若 EB EH = 6 ,求 CG 的长.

来源:2021年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,直线 l 表示一条东西走向的笔直公路,四边形 ABCD 是一块边长为100米的正方形草地,点 A D 在直线 l 上,小明从点 A 出发,沿公路 l 向西走了若干米后到达点 E 处,然后转身沿射线 EB 方向走到点 F 处,接着又改变方向沿射线 FC 方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设 AE = x 米(其中 x > 0 ) GA = y 米,已知 y x 之间的函数关系如图②所示,

(1)求图②中线段 MN 所在直线的函数表达式;

(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即 ΔEFG ) 是否可以是一个等腰三角形?如果可以,求出相应 x 的值;如果不可以,说明理由.

来源:2018年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题