如图,点 是矩形 的边 延长线上一点,以 为直径的 交矩形对角
线 于点 ,在线段 上取一点 ,连接 ,使 .
(1)求证: 是 的切线;
(2)若 , , ,求 的长.
在 中, , , 是 边上一点,且 , 是 的中点, 是 的中线.
(1)如图 ,连接 ,请直接写出 和 的数量关系: ;
(2)点 是射线 上的一个动点,将射线 绕点 逆时针旋转得射线 ,使 , 与射线 交于点 .
①如图 ,猜想并证明线段 和线段 之间的数量关系;
②若 , ,当 时,请直接写出线段 的长度(用含 的代数式表示).
如图, 内接于 , 是 的直径,弦 与 交于点 ,连接 ,过点 作直线 ,使 .
(1)求证:直线 是 的切线.
(2)若 , , ,求 的长.
已知: 是等腰三角形, , .点 在边 上,点 在边 上(点 、点 不与所在线段端点重合), ,连接 , ,射线 ,延长 交射线 于点 ,点 在直线 上,且 .
(1)如图,当 时
①求证: ;
②求 的度数;
(2)当 ,其它条件不变时, 的度数是 ;(用含 的代数式表示)
(3)若 是等边三角形, ,点 是 边上的三等分点,直线 与直线 交于点 ,请直接写出线段 的长.
如图,在 中, ,点 在线段 上,以 为直径的 与 相交于点 ,与 相交于点 , .
(1)求证: 是 的切线;
(2)若 ,求 的半径 ;
(3)在(1)的条件下,判断以 、 、 、 为顶点的四边形为哪种特殊四边形,并说明理由.
如图,菱形 的顶点 在 轴正半轴上,边 在 轴上,且 , ,反比例函数 的图象分别与 , 交于点 、点 ,点 的坐标是 ,连接 , .
(1)求反比例函数的解析式;
(2)求证: 是等腰三角形.
在 中, ,点 是 的中点,点 是 上的一个动点(点 不与点 , , 重合).过点 ,点 作直线 的垂线,垂足分别为点 和点 ,连接 , .
(1)如图1,请直接写出线段 与 的数量关系;
(2)如图2,当 时,请判断线段 与 之间的数量关系和位置关系,并说明理由
(3)若 , ,当 为等腰三角形时,请直接写出线段 的长.
如图, 中, ,以 为直径作 ,点 为 上一点,且 ,连接 并延长交 的延长线于点 .
(1)判断直线 与 的位置关系,并说明理由;
(2)若 , ,求 的长.
已知:如图,在四边形 中, ,点 为 边上一点, 与 分别为 和 的平分线.
(1)请你添加一个适当的条件 ,使得四边形 是平行四边形,并证明你的结论;
(2)作线段 的垂直平分线交 于点 ,并以 为直径作 (要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下, 交边 于点 ,连接 ,交 于点 ,若 , ,求 的半径.
已知 是 的直径,点 是 延长线上一点, , 是 的弦, .
(1)求证:直线 是 的切线;
(2)若 ,垂足为 , 的半径为4,求 的长.
如图,已知 是 的直径,过 点作 ,交弦 于点 ,交 于点 ,且使 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图, 是 的直径, 切 于点 ,连接 ,作 交 于点 , 的延长线与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 的半径为1, ,求 的长.
如图,在矩形 中, , , 是 边上的一点,且 .
(1)用尺规在图①中作出 边上的中点 ,连接 、 (保留作图痕迹,不写作法);
(2)如图②,在(1)的条件下,判断 是否平分 ,并说明理由;
(3)如图③,在(2)的条件下,连接 并延长交 的延长线于点 ,连接 ,不添加辅助线, 能否由都经过 点的两次变换与 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
试题篮
()