某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是
A.众数是108B.中位数是105C.平均数是101D.方差是93
甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:
选手 |
甲 |
乙 |
丙 |
丁 |
方差 |
0.023 |
0.018 |
0.020 |
0.021 |
则这10次跳绳中,这四个人发挥最稳定的是
A.甲B.乙C.丙D.丁
2016年6月4日 日贵州省第九届“贵青杯” “乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的
A.中位数B.平均数C.最高分D.方差
甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是 .(填“甲”或“乙”
小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是
A.小黄的成绩比小韦的成绩更稳定
B.两人成绩的众数相同
C.小韦的成绩比小黄的成绩更稳定
D.两人的平均成绩不相同
某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分)
七年级:89,92,92,92,93,95,95,96,98,98
八年级:88,93,93,93,94,94,95,95,97,98
整理得到如下统计表:
年级 |
最高分 |
平均分 |
众数 |
方差 |
七年级 |
98 |
94 |
|
7.6 |
八年级 |
98 |
94 |
93 |
|
根据以上信息,完成下列问题:
(1)填空: ;
(2)求表中 的值,并判断两个年级中哪个年级成绩更稳定;
(3)七年级两名最高分选手分别记为: , ,八年级第一、第二名选手分别记为: , ,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.
现有相同个数的甲、乙两组数据,经计算得: ,且 , ,比较这两组数据的稳定性,下列说法正确的是
A.甲比较稳定B.乙比较稳定
C.甲、乙一样稳定D.无法确定
甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全)
运动员 环数 次数 |
1 |
2 |
3 |
4 |
5 |
甲 |
10 |
8 |
9 |
10 |
8 |
乙 |
10 |
9 |
9 |
|
|
某同学计算出了甲的成绩平均数是9,方差是
,请作答:
(1)在图中用折线统计图将甲运动员的成绩表示出来;
(2)若甲、乙射击成绩平均数都一样,则 ;
(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出 、 的所有可能取值,并说明理由.
为了解某校八年级学生一门课程的学习情况,小佳和小丽分别对八年级1班和2班本门课程的期末成绩进行了调查分析.
小佳对八年级1班全班学生 名)的成绩进行分析,过程如下:
收集、整理数据:
表一
分数段 班级 |
|
|
|
|
八年级1班 |
7 |
5 |
10 |
3 |
分析数据:
表二
统计量 班级 |
平均数 |
中位数 |
众数 |
极差 |
方差 |
八年级1班 |
78 |
|
85 |
36 |
105.28 |
小丽用同样的方法对八年级2班全班学生 名)的成绩进行分析,数据如下:
表三
统计量 班级 |
平均数 |
中位数 |
众数 |
极差 |
方差 |
八年级2班 |
75 |
76 |
73 |
44 |
146.80 |
根据以上信息,解决下列问题:
(1)已知八年级1班学生的成绩在 这一组的数据如下:
85,87,88,80,82,85,83,85,87,85
根据上述数据,将表二补充完整;
(2)你认为哪个班级的成绩更为优异?请说明理由.
甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.1环,方差分别是 、 、 ,则三人中成绩最稳定的是 (填“甲”或“乙”或“丙” .
甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数 与方差 如下表:
甲 |
乙 |
丙 |
丁 |
|
平均数 (米 |
11.1 |
11.1 |
10.9 |
10.9 |
方差 |
1.1 |
1.2 |
1.3 |
1.4 |
若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择
A.甲B.乙C.丙D.丁
试题篮
()