甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示. 游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.
用列表法(或画树状图)求甲获胜的概率
你认为这个游戏规则对双方公平吗?请简要说明理由
将分别标有数字1、2、3、5的四张质地大小完全相同的卡片背面朝上放在桌面上.
(1)任意抽取一张,求抽到数字是偶数的概率.
(2)任意抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数大于23的概率.
在一个不透明的盒子里,装有四个分别写有数字1、2、3、4的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,摇匀后再随机取 出一个乒乓球,记下数字
请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;
求两次取出乒乓球上的数字之积小于6的概率
一个不透明的口袋中有3个完全相同的小球,分别标有数字1,2,3,随机摸出一个小球然后放回,再随机摸出一个小球,求两次摸出的小球数字之积等于3的概率.
如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.
(1)用树状图或列表法求小华、小丽获胜的概率;
(2)这个游戏规则对双方公平吗?请判断并说明理由.
新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).
参与度 人数 方式 |
|
|
|
|
录播 |
4 |
16 |
12 |
8 |
直播 |
2 |
10 |
16 |
12 |
(1)你认为哪种教学方式学生的参与度更高?简要说明理由.
(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?
(3)该校共有800名学生,选择“录播”和“直播”的人数之比为 ,估计参与度在0.4以下的共有多少人?
甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差 ,平均成绩 .
(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
.
某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.
(1)请补全该条形统计图;
(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.
①求这台机器在使用期内共更换了9个该易损零件的概率;
②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、丙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。
一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同。将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球。求第二次取出球的号码比第一次的大的概率。(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)
在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在函数y=-x+1的图象上的概率;
不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;
(2)随机摸出两个小球,直接写出两次都是绿球的概率.
(本题8分)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4
(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率
(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:
① 两次取出的小球一个标号是1,另一个标号是2的概率
② 第一次取出标号是1的小球且第二次取出标号是2的小球的概率
在一个不透明的纸箱里装有红、黄两种颜色的小球,它们除颜色外完全相同,其中红球有3个,黄球有1个。 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:由小明与小亮同时从纸箱里随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
试题篮
()