(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.
(1)在实验中他们共做了50次试验,试验结果如下:
① 填空:此次实验中,“1点朝上”的频率是 ▲ ;
② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?
(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小
亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.
(本题8分)某班“2011年新春联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、 2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是 .
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?请说明理由.
“校园手机”现象越来越受到社会的关注.“寒假”期间,记者刘凯随机调查了某区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.
(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;
(2)求(1)中方程有两个相等实数解的概率.
某种子培育基地用A、B、C、D、四种型号的小麦种子共2000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%。根据实验数据绘制了图1和图2两幅尚不完整的统计图.(说明:图1表示四种型号种子占总粒数的比例,图2表示四种型号种子的发芽数)
(1)D型号种子粒数是多少?并将图2的统计图补充完整;
(2)通过计算说明,应选哪一个型号的种子推广;
(3)若将所有的已发芽的种子放在一起,从中随机取出一粒,求取到B型号发芽种子的概率.
农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了52个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:
(1)请你在图1,图2中分别绘出频数分布直方图和频数折线图;
(2)请你对这块试验田里的水稻穗长进行分析;
(3)求这块试验田里穗长在5.5≤x<7范围内的谷穗的概率.
有甲、乙两个黑布袋,甲布袋中有四个除标号外完全相同的小球,小球上分别标有数字0、1、2、3;乙布袋中有三个除标号外完全相同的小球,小球上分别标有数字0、1、2.王红先从甲布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从乙布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示王红取球时m与n的对应值,请画出树状图或列表写出(m,n)的所有取值情况;
(2)求出点(m,n)落在函数y=的图象上的概率,并写出这些点的坐标.
在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白球”的频率折线统计图:
(1)请估计:当很大时,摸到白球的频率将会接近 (精确到0.01);
(2)假如你摸一次,你摸到黑球的概率P(黑球)= ;
(3)试估算盒子里白、黑两种颜色的球各有多少个?
(4)在(2)条件下如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?
如图,有两个可以自由转动的均匀转盘、,转盘上一条直径与一条半径垂直,转盘被分成相等的3份,并在每份内均标有数字.小明和小刚用这两个转盘做游戏,游戏规则如下:
①分别转动转盘与;
②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);
③如果和为0,则小明获胜;否则小刚获胜.
(1)用列表法(或树状图)求小明获胜的概率;
(2)你认为这个游戏对双方公平吗?如果你认为不公平,请适当改动规则使游戏对双方公平.
在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.
(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?
(2)若从小丽开始踢,经过三次踢踺后,小丽认为踢到她的可能性最大,你同意她的观点吗?请说明理由.
(6分) “五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个
不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50
元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先
后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格
的购物券,购物券可以在本商场消费.某顾客刚好消费500元.
(1)该顾客至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
某展览大厅有3个入口和2个出口,其示意图如下.参观者从任意一个入口进入,参观结束后从任意一个出口离开.
(1)小明从进入到离开,对于入口和出口的选择有多少种不同的结果(要求画出树状图)?
(2)小明从入口1进入并从出口A离开的概率是多少?
小明同学看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱
可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金5元;如
果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小明拿不
定主意究竟是玩还是不玩,请同学们帮帮忙!
(1)求出中奖的概率;
(2)如果有100人,每人玩一次这种游戏,大约有 ▲ 人中奖,奖金共约是 ▲ 元;设摊者约获利 ▲ 元;
(3)通过以上“有奖”游戏,你从中可得到什么启示?
为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐三种卡片可获奖,现购买该种食品3袋,能获奖的概率是多少?
试题篮
()