某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.
(1)每摸一次球所获购物卷金额的平均值是多少?
(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?
某中学七年级有8个班,要从中选出2个班代表学校参加某项活动。七(1)班必须参加,另外再从七(2)至七(8)班选出1个班.七(5)班有学生建议用如下的方法:从装有四个标有数字1、2、3、4的球袋中摸出1个球,记下数字,放回摇匀后再摸出1个球(球的大小、形状与质量完全一样),两次摸出的球上的数字和是几,就选几班。(1)分别求出选七(2)、七(5)、七(8)班的概率;(2)你认为这种方法公平吗?如不公平,请你设计一个公平的方案
小王和小明用如图所示的同一个转盘进行“配紫色”游戏,游戏规则如下:连续转动两次转盘,如果两次转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则配成紫色)则小王得1分,否则小明得1分(如果指针恰好指在分割线上,那么重转一次,直到指针指向一种颜色为止)。
(1)请你通过列表法分别求出小王和小明获胜的概率。
(2)你认为这个游戏对双方公平吗?请说明理由:若不公平,请修改规则,使游戏对双方公平。
小明手中有4张背面相同的扑克牌:红桃A、红桃2、黑桃A、黑桃2。先将4张牌背面朝上洗匀,再让小刚抽牌。
(1)小刚从中任意抽取一张扑克牌,抽到红桃的概率为 。
(2)小刚从中任意抽取两张扑克牌。游戏规则规定:小刚抽到的两张牌是一红、一黑,则小刚胜,否则小明胜,问该游戏对双方是否公平。(利用树状图或列表说明)
某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑。希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑。
(1) 写出所有选购方案(利用树状图或列表方法表示);
(2) 如果(1)中各种选购方案被选中的可能性相同,那么B型号电脑被选中的概率是多少?
一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.
(1)请用树状图或者列表法,表示事件发生的所有可能情况;
(2)求关于x的方程有两个不相等实数根的概率.
某射击运动员在相同条件下的射击160次,其成绩记录如下:
射击次数 |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
射中9环以上的次数 |
15 |
33 |
|
63 |
78 |
97 |
111 |
127 |
射中9环以上的频率 |
0.75 |
0.83 |
0.80 |
0.79 |
0.79 |
|
0.79 |
0.81 |
(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);
(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.
甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.
.小红和小慧玩纸牌游戏.如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
(1)请用树状图表示出两人抽牌可能出现的所有结果;
(2)求抽出的两张牌都是偶数的概率.
正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.
(1)请用树状图或列表的方法表示可能出现的所有结果;
(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.
在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率。请借助列表法或树形图说明理由。
某中学共有学生2000名,各年级男女生人数如下表:
|
六年级 |
七年级 |
八年级 |
九年级 |
男生 |
250 |
z |
254 |
258 |
女生 |
x |
244 |
y |
252 |
若从全校学生中任意抽一名,抽到六年级女生的概率是0.12;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应扇形的圆心角为44.28°.
(1)求x,y,z的值;
(2)求各年级男生的中位数;
(3)求各年级女生的平均数;
(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.
下图是由转盘和指针组成的装置、,两个转盘分别被分成三个面积相等的扇形. 装置上的数字分别是1,6,8,装置上的数字分别是4,5,7. 这两个装置除了表面数字不同外,其他构造完全相同. 现在你和另外一个同学分别同时用力转动装置、中的指针,如果我们规定指针停留在较大数字的一方获胜(若指针恰好停留在分界线上,则重新转动一次,直到指针停留在某一数字为止),那么你选择的装置是 ,请说明理由.
如图3,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个面积相等的扇形.随机地转动指针(当指针指在边界线上时视为无效,重转).
请解答下列问题.
⑴ 在图甲中,随机地转动指针,指针指向扇形2的概率是_____________;
⑵ 分别转动图甲和图乙的指针,两个指针停止时所指区域内的数之和为6或7,试用树状图或列表法求出其概率.
试题篮
()