点A(-1,4)和点B(-5,1)在平面直角坐标系中的位置如图所示.
(1)将点A、B分别向右平移5个单位,得到点A1、B1,请画出四边形AA1B1B;
(2)画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.
如图,已知△ABC的三个顶点在格点上.
(1)作出△ABC关于x轴对称的图形△
(2)求出△的面积.
如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,
斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′CE′,如图乙.这时AB与CD′相交于点O,D′E′与AB相交于点F,连接AD′.
(1)求∠OFE′的度数;
(2)求线段AD′的长;
(3)若把三角形D′C E′ 绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2 的内部、外部、还是边上?证明你的判断.
如图,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC, 若点A对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
△ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-2).
(1)在直角坐标系中画出△ABC;
(2)把△ABC向左平移4个单位,再向上平移5个单位,恰好得到三角形△A1B1C1, 试写出△A1B1C1三个
顶点的坐标,并在直角坐标系中描出这些点;
(3)求出△A1B1C1的面积.
如图,在平面直角坐标系XOY中,A(-1,5),B(-1,0),C(-4,3).
(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)直接写出A′,B′,C′三点的坐标:A′( ),B′( ),C′( )
(3)计算△ABC的面积.
如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标;
(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长.
如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了 度。
(2)连接CD,试判断△CBD的形状;
(3)求∠BDC的度数。
某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.
(1)写出点A,C的坐标;
(2)求点A和点C之间的距离.
如图,长方形纸片中,AB=10,将纸片折叠,使顶点落在边上的点处,折痕的一端点在边上.
图(2)
(1)如图(1),当折痕的另一端在边上且AE=5时,求AF的长
(2)如图(2),当折痕的另一端在边上且BG=13时,求AF的长.
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A’B’C’
(2)在直线l上找一点P(在图中标出),使PB+PC的长最短,这个最短长度是 .
如图,已知方格纸中有A、B、C三个格点,求作一个以A、B、C为顶点的格点四边形.
(1)在图1中作出的四边形是中心对称图形但不是轴对称图形.
(2)在图2中作出的四边形是轴对称图形但不是中心对称图形.
(3)在图3中作出的四边形既是轴对称图形又是中心对称图形.
试题篮
()