【原创】刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到:32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到的实数是___________________。
下面共有四种情景:
A. 一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);
B. 从树上开始往下掉的苹果(苹果落地前的高度与下落时间的关系);
C. 一杯越来越凉的开水(水温与时间的关系);
D. 竖直向上抛出的篮球(篮球落地前的速度与时间的关系);
上面各种情景可以近似的用下面那个图象来表示(横轴表示时间,纵轴表示相应的因变量),A、B、C、D各情景对应的图象依次为:___________。
已知:在△ABC中,∠C=90°,∠A>∠B.求证:∠A>45°.在用反证法证明此题时应先假设________________________.
从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(图甲),然后拼成一个平行四边形(图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式是
在日常生活中如取款、上网等都需要密码。有一种“因式分解”法产生的密码,方便记忆。原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:x-y=0,(x+y)=18,(x2+y2)=162,于是,就可以把“018162”作为一个六位数的密码。对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:_____(写出一个可)。
正方形网格中,每个小正方形的边长为1.图1所示的矩形是由4个全等的直角
梯形拼接而成的(图形的各顶点都在格点上;拼接时图形互不重叠,不留空隙),如果用这
4个直角梯形拼接成一个等腰梯形,那么(1)仿照图1,在图2中画出一个拼接成的等腰梯
形;(2)这个拼接成的等腰梯形的周长为________.
如图,△ABC中,AB=BC=CA=8.一电子跳蚤开始时在BC边的P0处,BP0=3.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2012与点P2013之间的距离为 .
(11·漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子_ ▲ 枚.(用含n的代数式表示)
如图,小明从点A出发,沿直线前进20m后向左转300,再沿直线前进20m,又向左转300……照这样走下去,小明第一次回到出发点A,一共走了 __ 米。
一辆汽车在行驶过程中,路程 (千米)与时间 (小时)之间的函数关系如图3所示 当时 0≤x≤1,关于的函数解析式为,那么当 1≤≤2时,y关于x的函数解析式为______________ .
某校准备召开一次学生代表会,七(1)班有5个参会名额,其中男生必须有m人,于是七(1)班班主任确定从9名(5男4女,其中班长吴英为女生)候选人员中选取.若“选到吴英”的可能性是大于0但小于1,则m= .
如图,图①是一块边长为1,周长记为P1的等边三角形纸板,沿图①的底边剪去一块边长的 的等边三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的 )后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则Pn-Pn-1=_________
将一些相同的小三角形按下图所示的规律摆放,请仔细观察,第 n个图形有 个小三角形.(用含 n 的代数式表示)
试题篮
()