优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

已知一次函数的图像和二次函数的图像都经过AB两点,且点Ay轴上,B点的纵坐标为5.

(1)求这个二次函数的解析式;
(2)将此二次函数图像的顶点记作点P,求△ABP的面积;
(3)已知点CD在射线AB上,且D点的横坐标比C点的横坐标大2,点EF在这个二次函数图像上,且CEDFy轴平行,当时,求C点坐标.

  • 题型:未知
  • 难度:未知

如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交时,其交点即为N),过点E作EQ⊥BC于Q,交折痕于点P。

(1)①当点分别与AB的中点、A点重合时,那么对应的点P分别是点,则(   ,  )(  ,   );②当∠OMN=60°时,对应的点P是点,求的坐标;
(2)若抛物线,是经过(1)中的点,试求a、b、c的值;
(3)在一般情况下,设P点坐标是(x,y),那么y与x之间函数关系式还会与(2)中函数关系相同吗(不考虑x的取值范围)?请你利用有关几何性质(即不再用三点)求出y与x之间的关系来给予说明.

  • 题型:未知
  • 难度:未知

巳知二次函数ya(x2-6x+8)(a>0)的图象与x轴分别交于点AB,与y轴交于点C.点D是抛物线的顶点.

(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点EF的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PAPBPCPD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PAPBPCPD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.

  • 题型:未知
  • 难度:未知

已知一元二次方程x2axa-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

  • 题型:未知
  • 难度:未知

如图所示,已知在直角梯形中,轴于点.动点点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积为

(1)求经过三点的抛物线解析式;
(2)将绕着点顺时针旋转,是否存在,使得的顶点在抛物线上?若存在,直接写出的值;若不存在,请说明理由.
(3)求的函数关系式.

  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.

(1)求直线的解析式.
(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.
(3)设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

  • 题型:未知
  • 难度:未知

如图,抛物线经过两点,与轴交于另一点

求抛物线的解析式;
已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;
在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.

  • 题型:未知
  • 难度:未知

已知函数y=mx2-6x+1(m是常数)
求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
若该函数的图象与x轴只有一个交点,求m的值.

  • 题型:未知
  • 难度:未知

某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)随销售单价x(元)增大而减小,且年销售量y(万件)与销售单价x(元)之间存在着一次函数关系y=x+b,其中整数k使式子有意义.经测算,销售单价为60元时,年销售量为50000件.
求y与x的函数关系式;
试写出该公司销售该产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额―年销售产品总进价―年总开支).当销售单价x为何值时,年获利最大?并求这个最大值;
若公司希望该种产品一年的销售获利不低于40万元.请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

  • 题型:未知
  • 难度:未知

已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.

求含有常数a的抛物线的解析式
设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;
设过原点O的直线l与抛物线在第一象限相交于A、B两点.若DA=2DB,且S△ABD=4,求a的值.

  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C
求点A的坐标
当∠ABC=45°时,求m的值
已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式

  • 题型:未知
  • 难度:未知

二次函数y=x2x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n).
求点A、B的坐标
在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.
①这样的点C有几个?
②能否将抛物线y=x2x平移后经过A、C两点?若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由

  • 题型:未知
  • 难度:未知

如图,已知正比例函数和反比例函数的图象都经过点
求正比例函数和反比例函数的解析式;
把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b
与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b上,且AO=BO=,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.
OH的长度等于___________;k=___________,b=____________;
是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满足以D、N、E为顶点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG<,写出探索过程.

  • 题型:未知
  • 难度:未知

如图,抛物线c1:y=ax2-2ax-c与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).
求抛物线c1的解析式;
问抛物线c1上是否存在P、Q(点P在点Q的上方)两点,使得以A、C、P、Q为顶点的四边形为直角梯形,若存在,求P、Q两点坐标;若不存在,请说明理由;
抛物线c2与抛物线c1关于x轴对称,直线x=m分别交c1、c2于D、E两点,直线x=n分别交c1、c2于M、N两点,若四边形DMNE为平行四边形,试判断m和n间的数量关系,并说明理由.

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题