优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

(本小题满分8分)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:

a)新数据都在60~100(含60和100)之间;
b)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求;
(2)若按关系式y=a(x-h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

  • 题型:未知
  • 难度:未知

如图,二次函数x轴交于AB两点,与y轴交于C点,点PA
点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等
腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点PPEAC,垂足为E,当P点运动时,
线段EG的长度是否发生改变,请说明理由。

  • 题型:未知
  • 难度:未知

如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(–1,0)三点.过点A作垂直于y轴的直线l. 在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q .连结AP.
求抛物线y=ax2+bx+c的解析式;
是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似.如果存在,请求出点P的坐标,若不存在,请说明理由;
当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.

  • 题型:未知
  • 难度:未知

下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.
分别写出当0≤x≤4与x>4时,y与x的函数关系式;
小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明。

  • 题型:未知
  • 难度:未知

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

  • 题型:未知
  • 难度:未知

如图,抛物线ya(x1)(x5)x轴的交点为MN.直线ykxb

x轴交于P(20),与y轴交于C.若AB两点在直线ykxb上,且AO=BO=AOBOD为线段MN的中点,OHRt△OPC斜边上的高.
(1)OH的长度等于___________;k=___________,b=____________;
(2)是否存在实数a,使得抛物线ya(x1)(x5)上有一点E,满足以DNE为顶
点的三角形与△AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG,写出探索过程.

  • 题型:未知
  • 难度:未知

已知:抛物线轴交于A(1,0)和B(,0)点,与轴交于C点
(1)求出抛物线的解析式;
(2)设抛物线对称轴与轴交于M点,在对称轴上是否存在P点,使为等腰三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时点E 的坐标.

  • 题型:未知
  • 难度:未知

市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?

  • 题型:未知
  • 难度:未知

如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速从图示位置沿x轴正方向匀速平行移动,同时一动点P也以相同速度从点A出发向B匀速移动,设它们运动时间为t秒(0≤t≤3),直线AB与该抛物线交点为N
① 当t=时,判断点P是否在直线ME上,说明理由;
② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?说明理由.

  • 题型:未知
  • 难度:未知

(本题8分)儿童商场购进一批型服装,销售时标价为75/件,按8折销售仍可获利50%,商场现决定对型服装开展促销活动,每件在8折的基础上再降价元销售,已知每天销售数量(件)与降价(元)之间的函数关系式为>0).
(1)求型服装的进价;
(2)求促销期间每天销售型服装所获得的利润的最大值.

  • 题型:未知
  • 难度:未知

如图,已知抛物线yx2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,
求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形
为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,直线yx-1和抛物线y=x 2+bx+c都经过点A(1,0),B(3,2).

(1)求抛物线的解析式;
(2)求不等式x2+bx+c<x-1的解集(直接写出答案).
(3)设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为
等腰三角形.(直接写出点P的坐标,不写过程)

  • 题型:未知
  • 难度:未知

已知:抛物线为常数,且).
(1)求证:抛物线与轴有两个交点;
(2)设抛物线与轴的两个交点分别为左侧),与轴的交点为.
时,求抛物线的解析式;

  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.

(1)求点与点的坐标;
(2)当四边形为菱形时,求函数的关系式.

  • 题型:未知
  • 难度:未知

(本题8分)二次函数的图象经过点
(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移         个单位,使得该图象的顶点在原点.

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题