优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值 / 解答题
初中数学

如图,在平面直角坐标系中,已知直线轴于点A,交轴于点B,抛物线经过点A和点(2,3),与轴的另一交点为C.

求此二次函数的表达式
若点P是轴下方的抛物线上一点,且△ACP的面积为10,求P点坐标;
若点D为抛物线上AB段上的一动点(点D不与A,B重合),过点D作DE⊥轴交轴于F,交线段AB于点E.是否存在点D,使得四边形BDEO为平行四边形?若存在,请求出满足条件的点D的坐标;若不存在,请通过计算说明理由.

  • 题型:未知
  • 难度:未知

已知二次函数的图象过点A(-3,0)和点B(1,0),且与轴交于点C,D点在抛物线上且横坐标是 -2。

求抛物线的解析式;
抛物线的对称轴上有一动点P,求出PA+PD的最小值
点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E、G点坐标;如果不存在,请说明理由。

  • 题型:未知
  • 难度:未知

如图1,矩形的顶点为原点,点上,把沿折叠,使点落在边上的点处,点坐标分别为,抛物线过点.

两点的坐标及该抛物线的解析式;
如图2,长、宽一定的矩形的宽,点沿(1)中的抛物线滑动,在滑动过程中轴,且的下方,当点横坐标为-1时,点距离个单位,当矩形在滑动过程中被轴分成上下两部分的面积比为2:3时,求点的坐标;
如图3,动点同时从点出发,点以每秒3个单位长度的速度沿折线的路线运动,点以每秒8个单位长度的速度沿折线的路线运动,当两点相遇时,它们都停止运动.设同时从点出发秒时,的面积为.①求出的函数关系式,并写出的取值范围:②设是①中函数的最大值,那么=        .

  • 题型:未知
  • 难度:未知

如图,直线分别交轴、轴于B、A两点,抛物线L:的顶点G在轴上,且过(0,4)和(4,4)两点.

求抛物线L的解析式;
抛物线L上是否存在这样的点C,使得四边形ABGC是以BG为底边的梯形,若存在,请求出C点的坐标,若不存在,请说明理由.
将抛物线L沿轴平行移动得抛物线L,其顶点为P,同时将△PAB沿直线AB翻折得到△DAB,使点D落在抛物线L上. 试问这样的抛物线L是否存在,若存在,求出L对应的函数关系式,若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知,抛物线与x轴交于两点,与y轴交于

求这条抛物线的解析式和抛物线顶点M的坐标
求四边形ABMC的面积;
在对称轴的右侧的抛物线上是否存在点P,使为直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由

  • 题型:未知
  • 难度:未知

如图,已知抛物线轴交于点,与轴交与A、B两点(点A在点B的左侧),且OA=1,OC=2

求抛物线的解析式及对称轴
点E是抛物线在第一象限内的一点,且,求点E的坐标;
在抛物线的对称轴上,是否存在点P,使得为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个
设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?

  • 题型:未知
  • 难度:未知

如图,抛物线y=x2-2x-3与x轴交于A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2。

求A、B 两点的坐标及直线AC的函数表达式;
P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由。

  • 题型:未知
  • 难度:未知

如图,二次函数的图象与轴交于两点,其中
坐标为(-1,0).点(0,5),(1,8)在抛物线上,为抛物线的顶点.

(1)求抛物线的函数表达式;
(2)求的面积.

  • 题型:未知
  • 难度:未知

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像 进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.
(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向     ,再向下平移7单位,相应的朋友距离为            
(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。
(3)探究三:为函数和它的基本函数,找到朋友路径,
并求相应的朋友距离。

  • 题型:未知
  • 难度:未知

.(本小题满分8分)
已知二次函数的图像经过点(0,-3),且顶点坐标为(-1,-4)。
(1)求该二次函数的解析式;
(2)设该二次函数的图像与x轴的交点为A、B,与轴的交点为C,求△ABC的面积。

  • 题型:未知
  • 难度:未知

.(本小题满分9分)如图,抛物线y=x2+bx+c经过A(-1,0),B(4,5)两点,请解答下列问题:

(1)求抛物线的解析式;
(2)若抛物线的顶点为点D,对称轴所在的直线交x轴于点E,
连接AD,点F为AD的中点,求出线段EF的长。
注:抛物线y=ax2+bx+c的对称轴是x=,顶点坐标是  
)。

  • 题型:未知
  • 难度:未知

(本小题满分9分)深圳大运会期间,某宾馆有若干间住房,住宿记录提供了如下信息:①7月20日全部住满,一天住宿费收入为3600元;②7月21日有10间房空着,一天住宿费收入为2800元;③该宾馆每间房每天收费标准相同。
(1)求该宾馆共有多少间住房,每间住房每天收费多少元?
(2)通过市场调查发现,每个住房每天的定价每增加10元,就会有一个房间空闲;己知该宾馆空闲房间每天每间费用10元,有游客居住房间每天每间再增加20元的其他费用,问房价定为多少元时,该宾馆一天的利润最大?

  • 题型:未知
  • 难度:未知

.如图,已知抛物线与轴交于点,与轴交于点

(1)求抛物线的解析式及其顶点的坐标;
(2)设直线轴于点.在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;
(3)过点轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

  • 题型:未知
  • 难度:未知

.如图,已知直线交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E

(1)直接写出点C和点D的坐标,C(    );D(    );
(2)求出过A,D,C三点的抛物线的解析式.

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题